Qamir Ullah, N. Kizilbash, J. Ambreen, Abdul Haleem, Mohamed Soliman, Mashael Alhumaidi Alotaibi, Muhammad Siddiq
{"title":"Silver and Palladium-Embedded Acrylamide-Based Hybrid Cryogels as Antimicrobial Agents","authors":"Qamir Ullah, N. Kizilbash, J. Ambreen, Abdul Haleem, Mohamed Soliman, Mashael Alhumaidi Alotaibi, Muhammad Siddiq","doi":"10.4028/p-vn7gub","DOIUrl":null,"url":null,"abstract":"Silver and palladium nanoparticles were prepared by in situ chemical reduction using Sodium Borohydride as a reducing agent at 18°C. The synthesis of pure and hybrid cryogels and the incorporation of silver and palladium nanoparticles inside the cryogel network, was confirmed by x-ray diffraction analysis and energy dispersive x-ray respectively. The antibacterial activities were checked by using the hybrid cryogels against Staphylococcus aureus (ATCC: 2593) and Escherichia coli (ATCC: 25922) bacteria. After taking into account the facile synthetic process and the adsorption performance, these cryogels can serve as good candidates for antibacterial purposes.","PeriodicalId":17714,"journal":{"name":"Key Engineering Materials","volume":" 4","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Key Engineering Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4028/p-vn7gub","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Silver and palladium nanoparticles were prepared by in situ chemical reduction using Sodium Borohydride as a reducing agent at 18°C. The synthesis of pure and hybrid cryogels and the incorporation of silver and palladium nanoparticles inside the cryogel network, was confirmed by x-ray diffraction analysis and energy dispersive x-ray respectively. The antibacterial activities were checked by using the hybrid cryogels against Staphylococcus aureus (ATCC: 2593) and Escherichia coli (ATCC: 25922) bacteria. After taking into account the facile synthetic process and the adsorption performance, these cryogels can serve as good candidates for antibacterial purposes.