First-class – biosynthesis of 6-MSA and bostrycoidin type I polyketides in Yarrowia lipolytica

IF 2.1 Q3 MYCOLOGY Frontiers in fungal biology Pub Date : 2024-03-22 DOI:10.3389/ffunb.2024.1327777
Mihaela Bejenari, Eva Mie Lang Spedtsberg, Julie Mathiesen, Alexandra Claire Jeppesen, Lucia Cernat, Aouregane Toussaint, Cristina Apostol, Victor Stoianov, T. B. Pedersen, M. R. Nielsen, Jens Laurids Sørensen
{"title":"First-class – biosynthesis of 6-MSA and bostrycoidin type I polyketides in Yarrowia lipolytica","authors":"Mihaela Bejenari, Eva Mie Lang Spedtsberg, Julie Mathiesen, Alexandra Claire Jeppesen, Lucia Cernat, Aouregane Toussaint, Cristina Apostol, Victor Stoianov, T. B. Pedersen, M. R. Nielsen, Jens Laurids Sørensen","doi":"10.3389/ffunb.2024.1327777","DOIUrl":null,"url":null,"abstract":"Fungal polyketides are a large group of secondary metabolites, valuable due to their diverse spectrum of pharmacological activities. Polyketide biosynthesis in filamentous fungi presents some challenges: small yield and low-purity titers. To tackle these issues, we switched to the yeast Yarrowia lipolytica, an easily cultivable heterologous host. As an oleaginous yeast, Y. lipolytica displays a high flux of acetyl- and malonyl-CoA precursors used in lipid synthesis. Likewise, acetyl- and malonyl-CoA are the building blocks of many natural polyketides, and we explored the possibility of redirecting this flux toward polyketide production. Despite its promising prospect, Y. lipolytica has so far only been used for heterologous expression of simple type III polyketide synthases (PKSs) from plants. Therefore, we decided to evaluate the potential of Y. lipolytica by targeting the more complex fungal polyketides synthesized by type I PKSs. We employed a CRISPR-Cas9-mediated genome editing method to achieve markerless gene integration of the genes responsible for bostrycoidin biosynthesis in Fusarium solani (fsr1, fsr2, and fsr3) and 6-methylsalicylic acid (6-MSA) biosynthesis in Aspergillus hancockii (6MSAS). Moreover, we attempted titer optimization through metabolic engineering by overexpressing two enzymes, TGL4 and AOX2, involved in lipid β-oxidation, but we did not observe an effect on polyketide production. With maximum titers of 403 mg/L 6-MSA and 35 mg/L bostrycoidin, the latter being substantially higher than our previous results in Saccharomyces cerevisiae (2.2 mg/L), this work demonstrates the potential of Y. lipolytica as a platform for heterologous production of complex fungal polyketides.","PeriodicalId":73084,"journal":{"name":"Frontiers in fungal biology","volume":null,"pages":null},"PeriodicalIF":2.1000,"publicationDate":"2024-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in fungal biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/ffunb.2024.1327777","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MYCOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Fungal polyketides are a large group of secondary metabolites, valuable due to their diverse spectrum of pharmacological activities. Polyketide biosynthesis in filamentous fungi presents some challenges: small yield and low-purity titers. To tackle these issues, we switched to the yeast Yarrowia lipolytica, an easily cultivable heterologous host. As an oleaginous yeast, Y. lipolytica displays a high flux of acetyl- and malonyl-CoA precursors used in lipid synthesis. Likewise, acetyl- and malonyl-CoA are the building blocks of many natural polyketides, and we explored the possibility of redirecting this flux toward polyketide production. Despite its promising prospect, Y. lipolytica has so far only been used for heterologous expression of simple type III polyketide synthases (PKSs) from plants. Therefore, we decided to evaluate the potential of Y. lipolytica by targeting the more complex fungal polyketides synthesized by type I PKSs. We employed a CRISPR-Cas9-mediated genome editing method to achieve markerless gene integration of the genes responsible for bostrycoidin biosynthesis in Fusarium solani (fsr1, fsr2, and fsr3) and 6-methylsalicylic acid (6-MSA) biosynthesis in Aspergillus hancockii (6MSAS). Moreover, we attempted titer optimization through metabolic engineering by overexpressing two enzymes, TGL4 and AOX2, involved in lipid β-oxidation, but we did not observe an effect on polyketide production. With maximum titers of 403 mg/L 6-MSA and 35 mg/L bostrycoidin, the latter being substantially higher than our previous results in Saccharomyces cerevisiae (2.2 mg/L), this work demonstrates the potential of Y. lipolytica as a platform for heterologous production of complex fungal polyketides.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Yarrowia lipolytica 中 6-MSA 和 Bostrycoidin I 型多酮类化合物的一级生物合成
真菌多酮苷是一大类次级代谢产物,因其具有多种药理活性而弥足珍贵。丝状真菌中的多酮生物合成面临一些挑战:产量小、纯度低。为了解决这些问题,我们转而使用容易培养的异源宿主--脂肪分解酵母菌(Yarrowia lipolytica)。作为一种含油酵母,脂溶性酵母显示出用于脂质合成的乙酰基和丙二酰-CoA 前体的高通量。同样,乙酰-CoA 和丙二酰-CoA 也是许多天然多酮的组成成分,因此我们探索了将这种通量重新导向多酮生产的可能性。尽管Y.lipolytica具有广阔的前景,但迄今为止它仅被用于异源表达来自植物的简单III型多酮合成酶(PKSs)。因此,我们决定以 I 型 PKSs 合成的更复杂的真菌多酮化合物为目标,评估 Y. lipolytica 的潜力。我们采用了 CRISPR-Cas9 介导的基因组编辑方法,对茄属镰刀菌(fsr1、fsr2 和fsr3)中负责梭菌毒素生物合成的基因和汉氏曲霉(Aspergillus hancockii)中负责 6-甲基水杨酸(6-MSA)生物合成的基因(6MSAS)进行了无标记基因整合。此外,我们还尝试通过代谢工程优化滴度,过量表达两种参与脂质β氧化的酶 TGL4 和 AOX2,但我们没有观察到它们对多酮生产的影响。这项工作证明了溶脂酵母作为异源生产复杂真菌多酮的平台的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
2.70
自引率
0.00%
发文量
0
审稿时长
13 weeks
期刊最新文献
Metal tolerance of Río Tinto fungi. What lies behind the large genome of Colletotrichum lindemuthianum. Conserved perception of host and non-host signals via the a-pheromone receptor Ste3 in Colletotrichum graminicola. The yeast Wickerhamomyces anomalus acts as a predator of the olive anthracnose-causing fungi, Colletotrichum nymphaeae, C. godetiae, and C. gloeosporioides. Editorial: Co-morbidity of COVID 19 and fungal infections.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1