Spatiotemporal aerosol prediction model based on fusion of machine learning and spatial analysis

IF 1.1 Q4 METEOROLOGY & ATMOSPHERIC SCIENCES Asian Journal of Atmospheric Environment Pub Date : 2024-03-21 DOI:10.1007/s44273-024-00031-2
Kwon-Ho Lee, Seong-Hun Pyo, Man Sing Wong
{"title":"Spatiotemporal aerosol prediction model based on fusion of machine learning and spatial analysis","authors":"Kwon-Ho Lee,&nbsp;Seong-Hun Pyo,&nbsp;Man Sing Wong","doi":"10.1007/s44273-024-00031-2","DOIUrl":null,"url":null,"abstract":"<div><p>This study examined long-term aerosol optical thickness (AOT) data from the Moderate Resolution Imaging Spectroradiometer (MODIS) to quantify aerosol conditions on the Korean Peninsula. Time-series machine learning (ML) techniques and spatial interpolation methods were used to predict future aerosol trends. This investigation utilized AOT data from Terra MODIS and meteorological data from Automatic Weather System (AWS) in eight selected cities in Korea (Gangneung, Seoul, Busan, Wonju, Naju, Jeonju, Jeju, and Baengyeong) to assess atmospheric aerosols from 2000 to 2021. A machine-learning-based AOT prediction model was developed to forecast future AOT using long-term observations. The accuracy analysis of the AOT prediction results revealed mean absolute error of 0.152 ± 0.15, mean squared error of 0.048 ± 0.016, bias of 0.002 ± 0.011, and root mean squared error of 0.216 ± 0.038, which are deemed satisfactory. By employing spatial interpolation, gridded AOT values within the observation area were generated based on the ML prediction results. This study effectively integrated the ML model with point-measured data and spatial interpolation for an extensive analysis of regional AOT across the Korean Peninsula. These findings have substantial implications for regional air pollution policies because they provide spatiotemporal AOT predictions.</p></div>","PeriodicalId":45358,"journal":{"name":"Asian Journal of Atmospheric Environment","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2024-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s44273-024-00031-2.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Asian Journal of Atmospheric Environment","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s44273-024-00031-2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

This study examined long-term aerosol optical thickness (AOT) data from the Moderate Resolution Imaging Spectroradiometer (MODIS) to quantify aerosol conditions on the Korean Peninsula. Time-series machine learning (ML) techniques and spatial interpolation methods were used to predict future aerosol trends. This investigation utilized AOT data from Terra MODIS and meteorological data from Automatic Weather System (AWS) in eight selected cities in Korea (Gangneung, Seoul, Busan, Wonju, Naju, Jeonju, Jeju, and Baengyeong) to assess atmospheric aerosols from 2000 to 2021. A machine-learning-based AOT prediction model was developed to forecast future AOT using long-term observations. The accuracy analysis of the AOT prediction results revealed mean absolute error of 0.152 ± 0.15, mean squared error of 0.048 ± 0.016, bias of 0.002 ± 0.011, and root mean squared error of 0.216 ± 0.038, which are deemed satisfactory. By employing spatial interpolation, gridded AOT values within the observation area were generated based on the ML prediction results. This study effectively integrated the ML model with point-measured data and spatial interpolation for an extensive analysis of regional AOT across the Korean Peninsula. These findings have substantial implications for regional air pollution policies because they provide spatiotemporal AOT predictions.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于机器学习和空间分析融合的时空气溶胶预测模型
本研究考察了中分辨率成像分光仪(MODIS)的长期气溶胶光学厚度(AOT)数据,以量化朝鲜半岛的气溶胶状况。采用时间序列机器学习(ML)技术和空间插值方法来预测未来的气溶胶趋势。这项研究利用 Terra MODIS 的 AOT 数据和自动气象系统(AWS)的气象数据,对韩国八个选定城市(江陵、首尔、釜山、原州、罗州、全州、济州和白翎)2000 年至 2021 年的大气气溶胶进行了评估。开发了基于机器学习的 AOT 预测模型,利用长期观测数据预测未来的 AOT。AOT 预测结果的精度分析表明,平均绝对误差为 0.152 ± 0.15,平均平方误差为 0.048 ± 0.016,偏差为 0.002 ± 0.011,均方根误差为 0.216 ± 0.038,结果令人满意。根据 ML 预测结果,采用空间插值法生成了观测区内的网格 AOT 值。这项研究有效地将 ML 模式与点测数据和空间插值相结合,对整个朝鲜半岛的区域 AOT 进行了广泛分析。这些研究结果提供了时空 AOT 预测,对区域空气污染政策具有重要意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Asian Journal of Atmospheric Environment
Asian Journal of Atmospheric Environment METEOROLOGY & ATMOSPHERIC SCIENCES-
CiteScore
2.80
自引率
6.70%
发文量
22
审稿时长
21 weeks
期刊最新文献
Characteristic of PM2.5 concentration and source apportionment during winter in Seosan, Korea A case study on the effect of contaminated inlet tubes on the accuracy of mid-cost optical particle counters for the ambient air monitoring of fine particles Vertical profile measurements for ammonia in a Japanese deciduous forest using denuder sampling technique: ammonia emissions near the forest floor Assessment of vehicle exhaust PM emissions using high-resolution on-road measurements in Seoul, Korea Satellite measurement data-based assessment of spatiotemporal characteristics of ultraviolet index (UVI) over the state of Johor, Malaysia
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1