{"title":"From service design thinking to the third generation of activity theory: a new model for designing AI-based decision-support systems","authors":"Silvia Marocco, Alessandra Talamo, Francesca Quintiliani","doi":"10.3389/frai.2024.1303691","DOIUrl":null,"url":null,"abstract":"The rise of Artificial Intelligence (AI), particularly machine learning, has brought a significant transformation in decision-making (DM) processes within organizations, with AI gradually assuming responsibilities that were traditionally performed by humans. However, as shown by recent findings, the acceptance of AI-based solutions in DM remains a concern as individuals still strongly prefer human intervention. This resistance can be attributed to psychological factors and other trust-related issues. To address these challenges, recent studies show that practical guidelines for user-centered design of AI are needed to promote justified trust in AI-based systems.To this aim, our study bridges Service Design Thinking and the third generation of Activity Theory to create a model which serves as a set of practical guidelines for the user centered design of Multi-Actor AI-based DSS. This model is created through the qualitative study of human activity as a unit of analysis. Nevertheless, it holds the potential for further enhancement through the application of quantitative methods to explore its diverse dimensions more extensively. As an illustrative example, we used a case study in the field of human capital investments, with a particular focus on organizational development, which involves managers, professionals, coaches and other significant actors. As a result, the qualitative methodology employed in our study can be characterized as a “pre-quantitative” investigation.This framework aims at locating the contribution of AI in complex human activity and identifying the potential role of quantitative data in it.","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":"79 4","pages":""},"PeriodicalIF":4.7000,"publicationDate":"2024-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/frai.2024.1303691","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
The rise of Artificial Intelligence (AI), particularly machine learning, has brought a significant transformation in decision-making (DM) processes within organizations, with AI gradually assuming responsibilities that were traditionally performed by humans. However, as shown by recent findings, the acceptance of AI-based solutions in DM remains a concern as individuals still strongly prefer human intervention. This resistance can be attributed to psychological factors and other trust-related issues. To address these challenges, recent studies show that practical guidelines for user-centered design of AI are needed to promote justified trust in AI-based systems.To this aim, our study bridges Service Design Thinking and the third generation of Activity Theory to create a model which serves as a set of practical guidelines for the user centered design of Multi-Actor AI-based DSS. This model is created through the qualitative study of human activity as a unit of analysis. Nevertheless, it holds the potential for further enhancement through the application of quantitative methods to explore its diverse dimensions more extensively. As an illustrative example, we used a case study in the field of human capital investments, with a particular focus on organizational development, which involves managers, professionals, coaches and other significant actors. As a result, the qualitative methodology employed in our study can be characterized as a “pre-quantitative” investigation.This framework aims at locating the contribution of AI in complex human activity and identifying the potential role of quantitative data in it.
期刊介绍:
ACS Applied Electronic Materials is an interdisciplinary journal publishing original research covering all aspects of electronic materials. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials science, engineering, optics, physics, and chemistry into important applications of electronic materials. Sample research topics that span the journal's scope are inorganic, organic, ionic and polymeric materials with properties that include conducting, semiconducting, superconducting, insulating, dielectric, magnetic, optoelectronic, piezoelectric, ferroelectric and thermoelectric.
Indexed/Abstracted:
Web of Science SCIE
Scopus
CAS
INSPEC
Portico