Investigating the compatibility of an irrigation decision support system with water rights and allocation in a selected irrigation network

IF 1.6 4区 农林科学 Q2 AGRONOMY Irrigation and Drainage Pub Date : 2024-03-21 DOI:10.1002/ird.2934
Hossein Dehghanisanij, Somayeh Emami, Amir Nourjou, Vahid Rezaverdinejad
{"title":"Investigating the compatibility of an irrigation decision support system with water rights and allocation in a selected irrigation network","authors":"Hossein Dehghanisanij,&nbsp;Somayeh Emami,&nbsp;Amir Nourjou,&nbsp;Vahid Rezaverdinejad","doi":"10.1002/ird.2934","DOIUrl":null,"url":null,"abstract":"<p>It is necessary to use different planning models, including decision support systems (DSSs), to allocate water resources. For this purpose, in this study, an irrigation decision support system (IDSS) was developed to improve irrigation management in the farming fields of Mahabad Plain located to the south-east of Lake Urmia. Next, the compatibility of the IDSS with the conditions of the Mahabad irrigation and drainage network, water and soil resources, meteorological data and soil moisture (SM) were investigated. The statistical indices of coefficient of determination (<i>R</i><sup>2</sup>), root mean square error (RMSE), normalized root mean square error (NRMSE), Nash–Sutcliffe efficiency (EF) and Wilmot agreement (<i>d</i>) were used to evaluate the adaptability of the IDSS. The results showed that the IDSS has reasonable compatibility with soil and water resources, crop yield and meteorological data. Irrigation scheduling provided by the IDSS led to a 13.9% reduction in water consumption and a 6.7% increase in crop yield. The IDSS estimated minimum and maximum temperature and sunshine hours to a satisfactory degree and relative humidity with an acceptable degree (NRMSE = 0.72–0.77) compared to regional synoptic station data. The performance of the IDSS in simulating SM is ranked from good to well (NRMSE = 0.75–0.83). The results indicate that the IDSS has a sufficient performance in estimating meteorological and soil moisture data with <i>R</i><sup>2</sup> = 0.90, RMSE = 4.65, NRMSE = 0.78, EF = 0.76 and <i>d</i> = 0.80. In addition, the IDSS provides the optimal irrigation schedule by considering the ability to deliver water from the irrigation and drainage network to the third-grade canal and agricultural fields as the upstream condition.</p>","PeriodicalId":14848,"journal":{"name":"Irrigation and Drainage","volume":"73 3","pages":"1119-1137"},"PeriodicalIF":1.6000,"publicationDate":"2024-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Irrigation and Drainage","FirstCategoryId":"97","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ird.2934","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AGRONOMY","Score":null,"Total":0}
引用次数: 0

Abstract

It is necessary to use different planning models, including decision support systems (DSSs), to allocate water resources. For this purpose, in this study, an irrigation decision support system (IDSS) was developed to improve irrigation management in the farming fields of Mahabad Plain located to the south-east of Lake Urmia. Next, the compatibility of the IDSS with the conditions of the Mahabad irrigation and drainage network, water and soil resources, meteorological data and soil moisture (SM) were investigated. The statistical indices of coefficient of determination (R2), root mean square error (RMSE), normalized root mean square error (NRMSE), Nash–Sutcliffe efficiency (EF) and Wilmot agreement (d) were used to evaluate the adaptability of the IDSS. The results showed that the IDSS has reasonable compatibility with soil and water resources, crop yield and meteorological data. Irrigation scheduling provided by the IDSS led to a 13.9% reduction in water consumption and a 6.7% increase in crop yield. The IDSS estimated minimum and maximum temperature and sunshine hours to a satisfactory degree and relative humidity with an acceptable degree (NRMSE = 0.72–0.77) compared to regional synoptic station data. The performance of the IDSS in simulating SM is ranked from good to well (NRMSE = 0.75–0.83). The results indicate that the IDSS has a sufficient performance in estimating meteorological and soil moisture data with R2 = 0.90, RMSE = 4.65, NRMSE = 0.78, EF = 0.76 and d = 0.80. In addition, the IDSS provides the optimal irrigation schedule by considering the ability to deliver water from the irrigation and drainage network to the third-grade canal and agricultural fields as the upstream condition.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
研究灌溉决策支持系统与选定灌溉网络中水权和水量分配的兼容性
有必要使用不同的规划模型,包括决策支持系统(DSS)来分配水资源。为此,本研究开发了灌溉决策支持系统(IDSS),以改善乌尔米耶湖东南部马哈巴德平原农田的灌溉管理。接下来,研究了灌溉决策支持系统与马哈巴德灌排网络条件、水土资源、气象数据和土壤湿度(SM)的兼容性。采用判定系数 (R2)、均方根误差 (RMSE)、归一化均方根误差 (NRMSE)、纳什-苏特克利夫效率 (EF) 和威尔莫特协议 (d) 等统计指标来评估 IDSS 的适应性。结果表明,IDSS 与水土资源、作物产量和气象数据具有合理的兼容性。IDSS 提供的灌溉调度使耗水量减少了 13.9%,作物产量增加了 6.7%。IDSS 对最低和最高气温以及日照时数的估算令人满意,与区域同步站数据相比,相对湿度的估算也在可接受的范围内(NRMSE = 0.72-0.77)。IDSS 在模拟 SM 方面的表现从好到较好(NRMSE = 0.75-0.83)。结果表明,IDSS 在估计气象和土壤水分数据方面具有足够的性能,R2 = 0.90,RMSE = 4.65,NRMSE = 0.78,EF = 0.76,d = 0.80。此外,IDSS 将灌排管网向三级渠和农田输水的能力作为上游条件,从而提供了最佳灌溉时间表。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Irrigation and Drainage
Irrigation and Drainage 农林科学-农艺学
CiteScore
3.40
自引率
10.50%
发文量
107
审稿时长
3 months
期刊介绍: Human intervention in the control of water for sustainable agricultural development involves the application of technology and management approaches to: (i) provide the appropriate quantities of water when it is needed by the crops, (ii) prevent salinisation and water-logging of the root zone, (iii) protect land from flooding, and (iv) maximise the beneficial use of water by appropriate allocation, conservation and reuse. All this has to be achieved within a framework of economic, social and environmental constraints. The Journal, therefore, covers a wide range of subjects, advancement in which, through high quality papers in the Journal, will make a significant contribution to the enormous task of satisfying the needs of the world’s ever-increasing population. The Journal also publishes book reviews.
期刊最新文献
Issue Information ASSESSING IMPACT OF IRRIGATION PROJECTS Issue Information Transboundary aspects of agricultural water management Climate-driven runoff variability in semi-mountainous reservoirs of the Vietnamese Mekong Delta: Insights for sustainable water management
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1