New method of molecular modeling of liquid transport coefficients

IF 0.5 4区 工程技术 Q4 ENGINEERING, AEROSPACE Thermophysics and Aeromechanics Pub Date : 2024-03-20 DOI:10.1134/S0869864323060057
V. Ya. Rudyak, E. V. Lezhnev
{"title":"New method of molecular modeling of liquid transport coefficients","authors":"V. Ya. Rudyak,&nbsp;E. V. Lezhnev","doi":"10.1134/S0869864323060057","DOIUrl":null,"url":null,"abstract":"<div><p>The paper presents a method of molecular modeling of fluid transport coefficients, which is an alternative to the method of molecular dynamics. The transport coefficients are determined using fluctuation-dissipation theorems. The dynamics of molecules is calculated stochastically, with intermolecular forces being set using the appropriate created database. A distribution function of intermolecular forces is constructed and a formula is obtained for its analytical approximation. The method effectiveness is demonstrated by the example of calculating the viscosity and thermal conductivity coefficients of liquid argon and benzene. The obtained data are compared with the data of experimental and molecular dynamic modeling and their good agreement is established. With the same modeling accuracy, the developed method is shown to be significantly more time-efficient compared to the molecular dynamics method.</p></div>","PeriodicalId":800,"journal":{"name":"Thermophysics and Aeromechanics","volume":"30 6","pages":"1021 - 1030"},"PeriodicalIF":0.5000,"publicationDate":"2024-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Thermophysics and Aeromechanics","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1134/S0869864323060057","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
引用次数: 0

Abstract

The paper presents a method of molecular modeling of fluid transport coefficients, which is an alternative to the method of molecular dynamics. The transport coefficients are determined using fluctuation-dissipation theorems. The dynamics of molecules is calculated stochastically, with intermolecular forces being set using the appropriate created database. A distribution function of intermolecular forces is constructed and a formula is obtained for its analytical approximation. The method effectiveness is demonstrated by the example of calculating the viscosity and thermal conductivity coefficients of liquid argon and benzene. The obtained data are compared with the data of experimental and molecular dynamic modeling and their good agreement is established. With the same modeling accuracy, the developed method is shown to be significantly more time-efficient compared to the molecular dynamics method.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
液体传输系数分子建模新方法
本文介绍了一种流体传输系数的分子建模方法,它是分子动力学方法的一种替代方法。输运系数是利用波动-耗散定理确定的。分子动力学是随机计算的,分子间的作用力是通过创建的相应数据库设定的。构建了分子间作用力的分布函数,并获得了分子间作用力的解析近似公式。以计算液态氩和苯的粘度和导热系数为例,证明了该方法的有效性。将所获得的数据与实验数据和分子动力学建模数据进行了比较,结果表明两者具有良好的一致性。在建模精度相同的情况下,与分子动力学方法相比,所开发的方法明显更省时。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Thermophysics and Aeromechanics
Thermophysics and Aeromechanics THERMODYNAMICS-MECHANICS
CiteScore
0.90
自引率
40.00%
发文量
29
审稿时长
>12 weeks
期刊介绍: The journal Thermophysics and Aeromechanics publishes original reports, reviews, and discussions on the following topics: hydrogasdynamics, heat and mass transfer, turbulence, means and methods of aero- and thermophysical experiment, physics of low-temperature plasma, and physical and technical problems of energetics. These topics are the prior fields of investigation at the Institute of Thermophysics and the Institute of Theoretical and Applied Mechanics of the Siberian Branch of the Russian Academy of Sciences (SB RAS), which are the founders of the journal along with SB RAS. This publication promotes an exchange of information between the researchers of Russia and the international scientific community.
期刊最新文献
Numerical investigation of entropy generation induced by assisted mixed convection in a vertical convergent channel: effects of geometric parameters Passive control of shock wave/turbulent boundary layer interaction using low permeability wall ventilation over a supercritical RAE-2822 airfoil Experimental research of Cr-Ag coatings prepared by magnetron sputtering and electroplating for ITER thermal shield Investigation of hydrodynamic characteristics of a stationary Taylor bubble at different velocities of a downward liquid flow Experimental investigation of thermal distribution on an airfoil wing coated with nanomaterials in a supersonic flow
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1