Solar desalination system for fresh water production performance estimation in net-zero energy consumption building: a comparative study on various machine learning models

A. Alhamami, Emmanuel Falude, Ahmed Osman Ibrahim, Y. Dodo, Okpakhalu Livingston Daniel, Farruh Atamurotov
{"title":"Solar desalination system for fresh water production performance estimation in net-zero energy consumption building: a comparative study on various machine learning models","authors":"A. Alhamami, Emmanuel Falude, Ahmed Osman Ibrahim, Y. Dodo, Okpakhalu Livingston Daniel, Farruh Atamurotov","doi":"10.2166/wst.2024.092","DOIUrl":null,"url":null,"abstract":"\n This study employs diverse machine learning models, including classic artificial neural network (ANN), hybrid ANN models, and the imperialist competitive algorithm and emotional artificial neural network (EANN), to predict crucial parameters such as fresh water production and vapor temperatures. Evaluation metrics reveal the integrated ANN-ICA model outperforms the classic ANN, achieving a remarkable 20% reduction in mean squared error (MSE). The emotional artificial neural network (EANN) demonstrates superior accuracy, attaining an impressive 99% coefficient of determination (R2) in predicting freshwater production and vapor temperatures. The comprehensive comparative analysis extends to environmental assessments, displaying the solar desalination system's compatibility with renewable energy sources. Results highlight the potential for the proposed system to conserve water resources and reduce environmental impact, with a substantial decrease in total dissolved solids (TDS) from over 6,000 ppm to below 50 ppm. The findings underscore the efficacy of machine learning models in optimizing solar-driven desalination systems, providing valuable insights into their capabilities for addressing water scarcity challenges and contributing to the global shift toward sustainable and environmentally friendly water production methods.","PeriodicalId":505935,"journal":{"name":"Water Science & Technology","volume":"14 16","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Water Science & Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2166/wst.2024.092","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This study employs diverse machine learning models, including classic artificial neural network (ANN), hybrid ANN models, and the imperialist competitive algorithm and emotional artificial neural network (EANN), to predict crucial parameters such as fresh water production and vapor temperatures. Evaluation metrics reveal the integrated ANN-ICA model outperforms the classic ANN, achieving a remarkable 20% reduction in mean squared error (MSE). The emotional artificial neural network (EANN) demonstrates superior accuracy, attaining an impressive 99% coefficient of determination (R2) in predicting freshwater production and vapor temperatures. The comprehensive comparative analysis extends to environmental assessments, displaying the solar desalination system's compatibility with renewable energy sources. Results highlight the potential for the proposed system to conserve water resources and reduce environmental impact, with a substantial decrease in total dissolved solids (TDS) from over 6,000 ppm to below 50 ppm. The findings underscore the efficacy of machine learning models in optimizing solar-driven desalination systems, providing valuable insights into their capabilities for addressing water scarcity challenges and contributing to the global shift toward sustainable and environmentally friendly water production methods.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于净零能耗建筑淡水生产的太阳能海水淡化系统性能评估:各种机器学习模型的比较研究
本研究采用了多种机器学习模型,包括经典人工神经网络(ANN)、混合ANN模型以及帝国主义竞争算法和情感人工神经网络(EANN),来预测淡水产量和水汽温度等关键参数。评估指标显示,综合 ANN-ICA 模型优于传统 ANN,显著降低了 20% 的均方误差 (MSE)。情感人工神经网络(EANN)在预测淡水产量和水蒸气温度方面表现出更高的准确性,达到了令人印象深刻的 99% 的决定系数 (R2)。综合比较分析扩展到环境评估,显示了太阳能海水淡化系统与可再生能源的兼容性。结果凸显了拟议系统在节约水资源和减少环境影响方面的潜力,总溶解固体(TDS)从 6,000 ppm 以上大幅降至 50 ppm 以下。研究结果凸显了机器学习模型在优化太阳能驱动的海水淡化系统方面的功效,为了解这些系统在应对水资源短缺挑战方面的能力提供了宝贵的见解,并有助于全球向可持续的环保型水生产方法转变。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A novel approach to integrate CCHP systems with desalination for sustainable energy and water solutions in educational buildings Metal–organic framework-derived carbon-based evaporator for activating persulfate to remove phenol in interfacial solar distillation Optimizing wastewater treatment through artificial intelligence: recent advances and future prospects The role of hyetograph shape and designer subjectivity in the design of a urban drainage system Progress of metal-loaded biochar-activated persulfate for degradation of emerging organic contaminants
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1