{"title":"Understanding deforestation in the tropics: post-classification detection using machine learning and probing its driving forces in Katingan, Indonesia","authors":"Ramdhani, Bambang H. Trisasongko, Widiatmaka","doi":"10.1007/s41685-024-00330-0","DOIUrl":null,"url":null,"abstract":"<div><p>Increasing demands for agricultural lands and built-up areas, driven by rapid population growth in developing countries including Indonesia, exacerbates the strain on tropical forests. Therefore, crucial to regular maintenance of forest monitoring is necessary to support sustainable forest management and minimize deforestation. In addition, driving factors of deforestation need to be comprehended and serve as considerations in the development of policies and decision-making. The main objective was to provide an in-depth understanding of the phenomenon of deforestation and its underlying variables in tropical regions, with a case study of Katingan Regency, Indonesia. Machine learning for remote sensing data analysis was integrated to investigate multi-temporal land cover in scouting deforestation and its driving factors. We found that the performance of random forests (RF) in all experimental settings was generally superior to support vector machines (SVM), achieving the best overall accuracy of 0.95. Land cover change analysis in the Katingan Regency (covering 2.04 M ha) suggested total deforestation during 2004−2022 of approximately 247.108 ha, an average of almost 14 thousand ha per year. Logistic regression showed that selected predictors significantly influenced the occurrence of deforestation. Non-forest areas devised a greater likelihood of deforestation than designated forest areas. Protected areas acted as an agent to minimize and impede regional deforestation. Meanwhile the probability of deforestation was greater on the outside of forest concession areas. We conclude that efforts to prevent deforestation need to be elevated, particularly in open-access production forests, characterized by high accessibility. In addition, the protection of the remaining forests, especially in non-forest designated areas, needs to be accommodated in regional spatial planning policies.</p></div>","PeriodicalId":36164,"journal":{"name":"Asia-Pacific Journal of Regional Science","volume":"8 2","pages":"493 - 521"},"PeriodicalIF":1.9000,"publicationDate":"2024-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Asia-Pacific Journal of Regional Science","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s41685-024-00330-0","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 0
Abstract
Increasing demands for agricultural lands and built-up areas, driven by rapid population growth in developing countries including Indonesia, exacerbates the strain on tropical forests. Therefore, crucial to regular maintenance of forest monitoring is necessary to support sustainable forest management and minimize deforestation. In addition, driving factors of deforestation need to be comprehended and serve as considerations in the development of policies and decision-making. The main objective was to provide an in-depth understanding of the phenomenon of deforestation and its underlying variables in tropical regions, with a case study of Katingan Regency, Indonesia. Machine learning for remote sensing data analysis was integrated to investigate multi-temporal land cover in scouting deforestation and its driving factors. We found that the performance of random forests (RF) in all experimental settings was generally superior to support vector machines (SVM), achieving the best overall accuracy of 0.95. Land cover change analysis in the Katingan Regency (covering 2.04 M ha) suggested total deforestation during 2004−2022 of approximately 247.108 ha, an average of almost 14 thousand ha per year. Logistic regression showed that selected predictors significantly influenced the occurrence of deforestation. Non-forest areas devised a greater likelihood of deforestation than designated forest areas. Protected areas acted as an agent to minimize and impede regional deforestation. Meanwhile the probability of deforestation was greater on the outside of forest concession areas. We conclude that efforts to prevent deforestation need to be elevated, particularly in open-access production forests, characterized by high accessibility. In addition, the protection of the remaining forests, especially in non-forest designated areas, needs to be accommodated in regional spatial planning policies.
期刊介绍:
The Asia-Pacific Journal of Regional Science expands the frontiers of regional science through the diffusion of intrinsically developed and advanced modern, regional science methodologies throughout the Asia-Pacific region. Articles published in the journal foster progress and development of regional science through the promotion of comprehensive and interdisciplinary academic studies in relationship to research in regional science across the globe. The journal’s scope includes articles dedicated to theoretical economics, positive economics including econometrics and statistical analysis and input–output analysis, CGE, Simulation, applied economics including international economics, regional economics, industrial organization, analysis of governance and institutional issues, law and economics, migration and labor markets, spatial economics, land economics, urban economics, agricultural economics, environmental economics, behavioral economics and spatial analysis with GIS/RS data education economics, sociology including urban sociology, rural sociology, environmental sociology and educational sociology, as well as traffic engineering. The journal provides a unique platform for its research community to further develop, analyze, and resolve urgent regional and urban issues in Asia, and to further refine established research around the world in this multidisciplinary field. The journal invites original articles, proposals, and book reviews.The Asia-Pacific Journal of Regional Science is a new English-language journal that spun out of Chiikigakukenkyuu, which has a 45-year history of publishing the best Japanese research in regional science in the Japanese language and, more recently and more frequently, in English. The development of regional science as an international discipline has necessitated the need for a new publication in English. The Asia-Pacific Journal of Regional Science is a publishing vehicle for English-language contributions to the field in Japan, across the complete Asia-Pacific arena, and beyond.Content published in this journal is peer reviewed (Double Blind).