Impacts of land use changes on discharge and water quality in rivers and streams: Case study of the continental United States

IF 2.6 4区 环境科学与生态学 Q3 ENGINEERING, ENVIRONMENTAL Journal of The American Water Resources Association Pub Date : 2024-03-19 DOI:10.1111/1752-1688.13198
Charitha Gunawardana, Walter McDonald
{"title":"Impacts of land use changes on discharge and water quality in rivers and streams: Case study of the continental United States","authors":"Charitha Gunawardana,&nbsp;Walter McDonald","doi":"10.1111/1752-1688.13198","DOIUrl":null,"url":null,"abstract":"<p>Water quality trends in streams and rivers are impacted by several factors including land use of the watershed; however, it is unclear what influence changes in the land use of a watershed subsequently have on changes in discharge and water quality in streams and rivers. This study seeks to fill this gap by evaluating the relationship between changes in land use and changes in discharge and water quality at United States Geological Survey (USGS) stream gages over the period of 2008–2016. Using land cover data and discharge and water quality data from 60 USGS gages, regression methods were applied to determine the strength of relationship between land use changes and changes in water quality and quantity. Trends in discharge and water quality were mixed, with a majority of watersheds demonstrating a decrease in dissolved oxygen and turbidity, no overall trend for discharge, and increases in specific conductance. A regression analysis revealed that discharge, turbidity, and specific conductance were correlated with changes in individual land use types with an <i>R</i><sup>2</sup> between 0.12 and 0.25. Combining the influences of multiple land uses in multivariate regression improved the predictions for discharge (<i>R</i><sup>2</sup> 0.58) and specific conductance (<i>R</i><sup>2</sup> 0.47), highlighting the magnitude for which land cover changes influence trends in water quality. Overall, this study demonstrates the impact that large-scale land use changes have on surface water quality.</p>","PeriodicalId":17234,"journal":{"name":"Journal of The American Water Resources Association","volume":"60 3","pages":"725-740"},"PeriodicalIF":2.6000,"publicationDate":"2024-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of The American Water Resources Association","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/1752-1688.13198","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

Water quality trends in streams and rivers are impacted by several factors including land use of the watershed; however, it is unclear what influence changes in the land use of a watershed subsequently have on changes in discharge and water quality in streams and rivers. This study seeks to fill this gap by evaluating the relationship between changes in land use and changes in discharge and water quality at United States Geological Survey (USGS) stream gages over the period of 2008–2016. Using land cover data and discharge and water quality data from 60 USGS gages, regression methods were applied to determine the strength of relationship between land use changes and changes in water quality and quantity. Trends in discharge and water quality were mixed, with a majority of watersheds demonstrating a decrease in dissolved oxygen and turbidity, no overall trend for discharge, and increases in specific conductance. A regression analysis revealed that discharge, turbidity, and specific conductance were correlated with changes in individual land use types with an R2 between 0.12 and 0.25. Combining the influences of multiple land uses in multivariate regression improved the predictions for discharge (R2 0.58) and specific conductance (R2 0.47), highlighting the magnitude for which land cover changes influence trends in water quality. Overall, this study demonstrates the impact that large-scale land use changes have on surface water quality.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
土地利用变化对河流和溪流的排放和水质的影响:美国大陆案例研究
溪流和河流的水质趋势受多种因素的影响,其中包括流域的土地利用;然而,流域土地利用的变化对溪流和河流的排放量和水质变化有何影响,目前尚不清楚。本研究试图通过评估 2008-2016 年间美国地质调查局(USGS)溪流监测站的土地利用变化与排水量和水质变化之间的关系来填补这一空白。利用美国地质调查局 60 个测站的土地覆被数据、排水量和水质数据,采用回归方法确定土地利用变化与水质和水量变化之间的关系强度。排水量和水质的变化趋势不一,大多数流域的溶解氧和浊度有所下降,排水量没有总体趋势,而比电导率则有所上升。回归分析表明,排水量、浊度和比电导与单个土地利用类型的变化相关,R2 在 0.12 到 0.25 之间。在多元回归中将多种土地利用的影响结合起来,提高了对排水量(R2 0.58)和比传导率(R2 0.47)的预测,突出了土地覆被变化对水质趋势的影响程度。总之,这项研究证明了大规模土地利用变化对地表水水质的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of The American Water Resources Association
Journal of The American Water Resources Association 环境科学-地球科学综合
CiteScore
4.10
自引率
12.50%
发文量
100
审稿时长
3 months
期刊介绍: JAWRA seeks to be the preeminent scholarly publication on multidisciplinary water resources issues. JAWRA papers present ideas derived from multiple disciplines woven together to give insight into a critical water issue, or are based primarily upon a single discipline with important applications to other disciplines. Papers often cover the topics of recent AWRA conferences such as riparian ecology, geographic information systems, adaptive management, and water policy. JAWRA authors present work within their disciplinary fields to a broader audience. Our Associate Editors and reviewers reflect this diversity to ensure a knowledgeable and fair review of a broad range of topics. We particularly encourage submissions of papers which impart a ''take home message'' our readers can use.
期刊最新文献
Issue Information Issue Information Evaluation of reported and unreported water uses in various sectors of the Potomac basin for the year 2017 Rapid geomorphic assessment walkabouts as a tool for stream mitigation monitoring Sources of seasonal water supply forecast uncertainty during snow drought in the Sierra Nevada
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1