The Soliton Solutions for Nonlocal Multi-Component Higher-Order Gerdjikov–Ivanov Equation via Riemann–Hilbert Problem

IF 3.6 2区 数学 Q1 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS Fractal and Fractional Pub Date : 2024-03-19 DOI:10.3390/fractalfract8030177
Jinshan Liu, Huanhe Dong, Yong Fang, Yong Zhang
{"title":"The Soliton Solutions for Nonlocal Multi-Component Higher-Order Gerdjikov–Ivanov Equation via Riemann–Hilbert Problem","authors":"Jinshan Liu, Huanhe Dong, Yong Fang, Yong Zhang","doi":"10.3390/fractalfract8030177","DOIUrl":null,"url":null,"abstract":"The Lax pairs of the higher-order Gerdjikov–Ivanov (HOGI) equation are extended to the multi-component formula. Then, we first derive four different types of nonlocal group reductions to this new system. To construct the solution of these four nonlocal equations, we utilize the Riemann–Hilbert method. Compared to the local HOGI equation, the solutions of nonlocal equations not only depend on the local spatial and time variables, but also the nonlocal variables. To exhibit the dynamic behavior, we consider the reverse-spacetime multi-component HOGI equation and its Riemann–Hilbert problem. When the Riemann–Hilbert problem is regular, the integral form solution can be given. Conversely, the exact solutions can be obtained explicitly. Finally, as concrete examples, the periodic solutions of the two-component nonlocal HOGI equation are given, which is different from the local equation.","PeriodicalId":12435,"journal":{"name":"Fractal and Fractional","volume":null,"pages":null},"PeriodicalIF":3.6000,"publicationDate":"2024-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fractal and Fractional","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3390/fractalfract8030177","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

The Lax pairs of the higher-order Gerdjikov–Ivanov (HOGI) equation are extended to the multi-component formula. Then, we first derive four different types of nonlocal group reductions to this new system. To construct the solution of these four nonlocal equations, we utilize the Riemann–Hilbert method. Compared to the local HOGI equation, the solutions of nonlocal equations not only depend on the local spatial and time variables, but also the nonlocal variables. To exhibit the dynamic behavior, we consider the reverse-spacetime multi-component HOGI equation and its Riemann–Hilbert problem. When the Riemann–Hilbert problem is regular, the integral form solution can be given. Conversely, the exact solutions can be obtained explicitly. Finally, as concrete examples, the periodic solutions of the two-component nonlocal HOGI equation are given, which is different from the local equation.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过黎曼-希尔伯特问题求非局部多分量高阶格尔吉科夫-伊万诺夫方程的孤子解
高阶格尔吉科夫-伊万诺夫(HOGI)方程的拉克斯对被扩展到多分量公式。然后,我们首先对这个新系统推导出四种不同类型的非局部群还原。为了构建这四个非局部方程的解,我们使用了黎曼-希尔伯特方法。与局部 HOGI 方程相比,非局部方程的解不仅取决于局部空间和时间变量,还取决于非局部变量。为了展示其动态行为,我们考虑了反时空多分量 HOGI方程及其黎曼-希尔伯特问题。当黎曼-希尔伯特问题有规律时,可以给出积分形式解。反之,则可以明确地得到精确解。最后,作为具体例子,给出了与局部方程不同的双分量非局部 HOGI 方程的周期解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Fractal and Fractional
Fractal and Fractional MATHEMATICS, INTERDISCIPLINARY APPLICATIONS-
CiteScore
4.60
自引率
18.50%
发文量
632
审稿时长
11 weeks
期刊介绍: Fractal and Fractional is an international, scientific, peer-reviewed, open access journal that focuses on the study of fractals and fractional calculus, as well as their applications across various fields of science and engineering. It is published monthly online by MDPI and offers a cutting-edge platform for research papers, reviews, and short notes in this specialized area. The journal, identified by ISSN 2504-3110, encourages scientists to submit their experimental and theoretical findings in great detail, with no limits on the length of manuscripts to ensure reproducibility. A key objective is to facilitate the publication of detailed research, including experimental procedures and calculations. "Fractal and Fractional" also stands out for its unique offerings: it warmly welcomes manuscripts related to research proposals and innovative ideas, and allows for the deposition of electronic files containing detailed calculations and experimental protocols as supplementary material.
期刊最新文献
Riemann–Hilbert Method Equipped with Mixed Spectrum for N-Soliton Solutions of New Three-Component Coupled Time-Varying Coefficient Complex mKdV Equations Fractional Active Disturbance Rejection Positioning and Docking Control of Remotely Operated Vehicles: Analysis and Experimental Validation Fractal Characterization of the Pore-Throat Structure in Tight Sandstone Based on Low-Temperature Nitrogen Gas Adsorption and High-Pressure Mercury Injection Estimation of Fractal Dimension and Segmentation of Brain Tumor with Parallel Features Aggregation Network Fractional Operators and Fractionally Integrated Random Fields on Zν
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1