N. Bauman, J. Srbljanović, Ivana Čolović Čalovski, Olivera Lijeskić, V. Ćirković, Jelena Trajković, B. Bobić, Andjelija Ž. Ilić, T. Štajner
{"title":"Structural Characterization of Toxoplasma gondii Brain Cysts in a Model of Reactivated Toxoplasmosis Using Computational Image Analysis","authors":"N. Bauman, J. Srbljanović, Ivana Čolović Čalovski, Olivera Lijeskić, V. Ćirković, Jelena Trajković, B. Bobić, Andjelija Ž. Ilić, T. Štajner","doi":"10.3390/fractalfract8030175","DOIUrl":null,"url":null,"abstract":"Toxoplasma gondii is an obligate intracellular parasite existing in three infectious life stages—tachyzoites, bradyzoites, and sporozoites. Rupture of tissue cysts and re-conversion of bradyzoites to tachyzoites leads to reactivated toxoplasmosis (RT) in an immunocompromised host. The aim of this study was to apply ImageJ software for analysis of T. gondii brain cysts obtained from a newly established in vivo model of RT. Mice chronically infected with T. gondii (BGD1 and BGD26 strains) were treated with cyclophosphamide and hydrocortisone (experimental group—EG) or left untreated as infection controls (ICs). RT in mice was confirmed by qPCR (PCR+); mice remaining chronically infected were PCR−. A total of 90 images of cysts were analyzed for fractal dimension (FD), lacunarity (L), diameter (D), circularity (C), and packing density (PD). Circularity was significantly higher in PCR+ compared to IC mice (p < 0.05 for BGD1, p < 0.001 for the BGD26 strain). A significant negative correlation between D and PD was observed only in IC for the BGD1 strain (ρ = −0.384, p = 0.048), while fractal parameters were stable. Significantly higher D, C, and PD and lower lacunarity, L, were noticed in the BGD1 compared to the more aggressive BGD26 strain. In conclusion, these results demonstrate the complexity of structural alterations of T. gondii cysts in an immunocompromised host and emphasize the application potential of ImageJ in the experimental models of toxoplasmosis.","PeriodicalId":12435,"journal":{"name":"Fractal and Fractional","volume":null,"pages":null},"PeriodicalIF":3.6000,"publicationDate":"2024-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fractal and Fractional","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3390/fractalfract8030175","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
Toxoplasma gondii is an obligate intracellular parasite existing in three infectious life stages—tachyzoites, bradyzoites, and sporozoites. Rupture of tissue cysts and re-conversion of bradyzoites to tachyzoites leads to reactivated toxoplasmosis (RT) in an immunocompromised host. The aim of this study was to apply ImageJ software for analysis of T. gondii brain cysts obtained from a newly established in vivo model of RT. Mice chronically infected with T. gondii (BGD1 and BGD26 strains) were treated with cyclophosphamide and hydrocortisone (experimental group—EG) or left untreated as infection controls (ICs). RT in mice was confirmed by qPCR (PCR+); mice remaining chronically infected were PCR−. A total of 90 images of cysts were analyzed for fractal dimension (FD), lacunarity (L), diameter (D), circularity (C), and packing density (PD). Circularity was significantly higher in PCR+ compared to IC mice (p < 0.05 for BGD1, p < 0.001 for the BGD26 strain). A significant negative correlation between D and PD was observed only in IC for the BGD1 strain (ρ = −0.384, p = 0.048), while fractal parameters were stable. Significantly higher D, C, and PD and lower lacunarity, L, were noticed in the BGD1 compared to the more aggressive BGD26 strain. In conclusion, these results demonstrate the complexity of structural alterations of T. gondii cysts in an immunocompromised host and emphasize the application potential of ImageJ in the experimental models of toxoplasmosis.
期刊介绍:
Fractal and Fractional is an international, scientific, peer-reviewed, open access journal that focuses on the study of fractals and fractional calculus, as well as their applications across various fields of science and engineering. It is published monthly online by MDPI and offers a cutting-edge platform for research papers, reviews, and short notes in this specialized area. The journal, identified by ISSN 2504-3110, encourages scientists to submit their experimental and theoretical findings in great detail, with no limits on the length of manuscripts to ensure reproducibility. A key objective is to facilitate the publication of detailed research, including experimental procedures and calculations. "Fractal and Fractional" also stands out for its unique offerings: it warmly welcomes manuscripts related to research proposals and innovative ideas, and allows for the deposition of electronic files containing detailed calculations and experimental protocols as supplementary material.