Reducing Hospital Readmission Risk Using Predictive Analytics

Arti Mann, Ben Cleveland, Dan Bumblauskas, Shashidhar Kaparthi
{"title":"Reducing Hospital Readmission Risk Using Predictive Analytics","authors":"Arti Mann, Ben Cleveland, Dan Bumblauskas, Shashidhar Kaparthi","doi":"10.1287/inte.2022.0086","DOIUrl":null,"url":null,"abstract":"This study highlights the development and application of a predictive analytics system in a Midwestern hospital to assess and manage the risk of patient readmissions within 30 days of discharge. By integrating advanced analytical modeling with electronic health records, the system enables the creation of personalized care plans by accurately predicting patients' readmission risks and the optimal timing for interventions. The results suggest that such models can significantly improve resource allocation and the personalization of care plans, thereby reducing unnecessary readmissions and aligning with value-based, patient-centered healthcare goals.","PeriodicalId":510763,"journal":{"name":"INFORMS Journal on Applied Analytics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"INFORMS Journal on Applied Analytics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1287/inte.2022.0086","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This study highlights the development and application of a predictive analytics system in a Midwestern hospital to assess and manage the risk of patient readmissions within 30 days of discharge. By integrating advanced analytical modeling with electronic health records, the system enables the creation of personalized care plans by accurately predicting patients' readmission risks and the optimal timing for interventions. The results suggest that such models can significantly improve resource allocation and the personalization of care plans, thereby reducing unnecessary readmissions and aligning with value-based, patient-centered healthcare goals.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用预测分析降低再住院风险
本研究重点介绍了中西部一家医院开发和应用预测分析系统,以评估和管理患者出院后 30 天内再入院的风险。通过将先进的分析模型与电子健康记录相结合,该系统能够准确预测患者的再入院风险和最佳干预时机,从而制定个性化的护理计划。研究结果表明,这种模型可以显著改善资源分配和护理计划的个性化,从而减少不必要的再入院情况,并符合以价值为基础、以患者为中心的医疗保健目标。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Amazon Locker Capacity Management Reducing Hospital Readmission Risk Using Predictive Analytics Improving South Korea’s Crystal Ball for Baseball Postseason Clinching and Elimination Innovative Integer Programming Software and Methods for Large-Scale Routing at DHL Supply Chain Meituan’s Real-Time Intelligent Dispatching Algorithms Build the World’s Largest Minute-Level Delivery Network
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1