Reconceptualizing the interplay between geopolitical index, green financial assets and renewable energy markets: evidence from the machine learning approach
Anis Jarboui, Emna Mnif, Nahed Zghidi, Zied Akrout
{"title":"Reconceptualizing the interplay between geopolitical index, green financial assets and renewable energy markets: evidence from the machine learning approach","authors":"Anis Jarboui, Emna Mnif, Nahed Zghidi, Zied Akrout","doi":"10.1108/agjsr-09-2023-0458","DOIUrl":null,"url":null,"abstract":"PurposeIn an era marked by heightened geopolitical uncertainties, such as international conflicts and economic instability, the dynamics of energy markets assume paramount importance. Our study delves into this complex backdrop, focusing on the intricate interplay the between traditional and emerging energy sectors.Design/methodology/approachThis study analyzes the interconnections among green financial assets, renewable energy markets, the geopolitical risk index and cryptocurrency carbon emissions from December 19, 2017 to February 15, 2023. We investigate these relationships using a novel time-frequency connectedness approach and machine learning methodology.FindingsOur findings reveal that green energy stocks, except the PBW, exhibit the highest net transmission of volatility, followed by COAL. In contrast, CARBON emerges as the primary net recipient of volatility, followed by fuel energy assets. The frequency decomposition results also indicate that the long-term components serve as the primary source of directional volatility spillover, suggesting that volatility transmission among green stocks and energy assets tends to occur over a more extended period. The SHapley additive exPlanations (SHAP) results show that the green and fuel energy markets are negatively connected with geopolitical risks (GPRs). The results obtained through the SHAP analysis confirm the novel time-varying parameter vector autoregressive (TVP-VAR) frequency connectedness findings. The CARBON and PBW markets consistently experience spillover shocks from other markets in short and long-term horizons. The role of crude oil as a receiver or transmitter of shocks varies over time.Originality/valueGreen financial assets and clean energy play significant roles in the financial markets and reduce geopolitical risk. Our study employs a time-frequency connectedness approach to assess the interconnections among four markets' families: fuel, renewable energy, green stocks and carbon markets. We utilize the novel TVP-VAR approach, which allows for flexibility and enables us to measure net pairwise connectedness in both short and long-term horizons.","PeriodicalId":50978,"journal":{"name":"Arab Gulf Journal of Scientific Research","volume":"27 9","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Arab Gulf Journal of Scientific Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1108/agjsr-09-2023-0458","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Business, Management and Accounting","Score":null,"Total":0}
引用次数: 0
Abstract
PurposeIn an era marked by heightened geopolitical uncertainties, such as international conflicts and economic instability, the dynamics of energy markets assume paramount importance. Our study delves into this complex backdrop, focusing on the intricate interplay the between traditional and emerging energy sectors.Design/methodology/approachThis study analyzes the interconnections among green financial assets, renewable energy markets, the geopolitical risk index and cryptocurrency carbon emissions from December 19, 2017 to February 15, 2023. We investigate these relationships using a novel time-frequency connectedness approach and machine learning methodology.FindingsOur findings reveal that green energy stocks, except the PBW, exhibit the highest net transmission of volatility, followed by COAL. In contrast, CARBON emerges as the primary net recipient of volatility, followed by fuel energy assets. The frequency decomposition results also indicate that the long-term components serve as the primary source of directional volatility spillover, suggesting that volatility transmission among green stocks and energy assets tends to occur over a more extended period. The SHapley additive exPlanations (SHAP) results show that the green and fuel energy markets are negatively connected with geopolitical risks (GPRs). The results obtained through the SHAP analysis confirm the novel time-varying parameter vector autoregressive (TVP-VAR) frequency connectedness findings. The CARBON and PBW markets consistently experience spillover shocks from other markets in short and long-term horizons. The role of crude oil as a receiver or transmitter of shocks varies over time.Originality/valueGreen financial assets and clean energy play significant roles in the financial markets and reduce geopolitical risk. Our study employs a time-frequency connectedness approach to assess the interconnections among four markets' families: fuel, renewable energy, green stocks and carbon markets. We utilize the novel TVP-VAR approach, which allows for flexibility and enables us to measure net pairwise connectedness in both short and long-term horizons.