Post-Operative Brain MRI Resection Cavity Segmentation Model and Follow-Up Treatment Assistance

Sobha Xavier P, Sathish P. K., Raju G
{"title":"Post-Operative Brain MRI Resection Cavity Segmentation Model and Follow-Up Treatment Assistance","authors":"Sobha Xavier P, Sathish P. K., Raju G","doi":"10.3991/ijoe.v20i05.45609","DOIUrl":null,"url":null,"abstract":"Post-operative brain magnetic resonance imaging (MRI) segmentation is inherently challenging due to the diverse patterns in brain tissue, which makes it difficult to accurately identify resected areas. Therefore, there is a crucial need for a precise segmentation model. Due to the scarcity of post-operative brain MRI scans, it is not feasible to use complex models that require a large amount of training data. This paper introduces an innovative approach for accurately segmenting and quantifying post-operative brain resection cavities in MRI scans. The proposed model, named Attention-Enhanced VGG-U-Net, integrates VGG16 initial weights in the encoder section and incorporates a self-attention module in the decoder, offering improved accuracy for postoperative brain MRI segmentation. The attention mechanism enhances its accuracy by concentrating on a specific area of interest. The VGG16 model is comparatively lightweight, has pre-trained weights, and allows the model to extract incredibly detailed information from the input. The model is trained on publicly available post-operative brain MRI data and achieved a Dice coefficient value of 0.893. The model is then assessed using a clinical dataset of postoperative brain MRIs. The model facilitates the quantification of the resected regions and enables comparisons with each brain region based on pre-operative images. The capabilities of the model assist radiologists in evaluating surgical success and directing follow-up procedures.","PeriodicalId":507997,"journal":{"name":"International Journal of Online and Biomedical Engineering (iJOE)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Online and Biomedical Engineering (iJOE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3991/ijoe.v20i05.45609","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Post-operative brain magnetic resonance imaging (MRI) segmentation is inherently challenging due to the diverse patterns in brain tissue, which makes it difficult to accurately identify resected areas. Therefore, there is a crucial need for a precise segmentation model. Due to the scarcity of post-operative brain MRI scans, it is not feasible to use complex models that require a large amount of training data. This paper introduces an innovative approach for accurately segmenting and quantifying post-operative brain resection cavities in MRI scans. The proposed model, named Attention-Enhanced VGG-U-Net, integrates VGG16 initial weights in the encoder section and incorporates a self-attention module in the decoder, offering improved accuracy for postoperative brain MRI segmentation. The attention mechanism enhances its accuracy by concentrating on a specific area of interest. The VGG16 model is comparatively lightweight, has pre-trained weights, and allows the model to extract incredibly detailed information from the input. The model is trained on publicly available post-operative brain MRI data and achieved a Dice coefficient value of 0.893. The model is then assessed using a clinical dataset of postoperative brain MRIs. The model facilitates the quantification of the resected regions and enables comparisons with each brain region based on pre-operative images. The capabilities of the model assist radiologists in evaluating surgical success and directing follow-up procedures.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
脑部磁共振成像术后切除腔分割模型及后续治疗辅助工具
脑部磁共振成像(MRI)术后分割本身就具有挑战性,因为脑组织形态各异,难以准确识别切除区域。因此,亟需一种精确的分割模型。由于术后脑部磁共振成像扫描的稀缺性,使用需要大量训练数据的复杂模型并不可行。本文介绍了一种创新方法,用于准确分割和量化核磁共振成像扫描中的术后脑切除腔。所提出的模型被命名为注意力增强 VGG-U-Net 模型,在编码器部分集成了 VGG16 初始权重,并在解码器中集成了自注意力模块,从而提高了术后脑部 MRI 分割的准确性。注意力机制通过集中在特定的感兴趣区域来提高其准确性。VGG16 模型相对较轻,具有预先训练的权重,可从输入中提取极其详细的信息。该模型在公开的术后脑部核磁共振成像数据上进行了训练,Dice 系数值达到了 0.893。然后使用术后脑部核磁共振成像的临床数据集对该模型进行评估。该模型有助于量化切除区域,并能根据术前图像与每个脑区进行比较。该模型的功能有助于放射科医生评估手术成功率并指导后续手术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
XAI-PhD: Fortifying Trust of Phishing URL Detection Empowered by Shapley Additive Explanations Improving the Accuracy of Oncology Diagnosis: A Machine Learning-Based Approach to Cancer Prediction Social Robots, Mindfulness, and Kindergarten Blockchain of Things for Securing and Managing Water 4.0 Applications Intelligent Interconnected Healthcare System: Integrating IoT and Big Data for Personalized Patient Care
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1