An Intelligent Mathematics Problem-Solving Tutoring System Framework

Mohamad Ariffin Abu Bakar, Ahmad Termimi Ab Ghani, Mohd Lazim Abdullah
{"title":"An Intelligent Mathematics Problem-Solving Tutoring System Framework","authors":"Mohamad Ariffin Abu Bakar, Ahmad Termimi Ab Ghani, Mohd Lazim Abdullah","doi":"10.3991/ijoe.v20i05.47793","DOIUrl":null,"url":null,"abstract":"This study proposed a novel framework for redesigning problem-solving activities in an intelligent tutoring system (ITS) called the intelligent neural-mechanistic mathematics problem- solving tutoring system (IN-MP-STS). This concept paper presents a new approach to ITS by incorporating elements of neuroscience mechanisms as a learning strategy that focuses on optimizing the brain’s ability through neural mechanisms. It also introduces fuzzy neural networks (FNNs) as a tool for modulating assessment and analyzing outcomes. This framework offers an alternative perspective on delivery methods and learning approaches in the ITS module. By effectively integrating neuroscience mechanistic elements such as motivation, activation, regulation, execution, memorization, and interactivities, deep learning can be achieved, leading to improved student competence. This framework also proposes an adaptive assessment component based on FNNs, which will enhance the measurement and feedback modules in the system. It is necessary to modify the way that ITS and soft computing methods, such as the study of neural networks (NNs), are combined to make learning measurement and assessment more transparent. This innovation has not been fully disclosed, so researchers are encouraged to further test the concepts presented to assess their alignment with the existing system and ethical considerations. This framework enhances the conceptual research findings of FNNs and incorporates neuroscience-based strategies into architecture and autonomous problem-solving skills within an ITS model. It also offers references for the development of problem-solving learning. IN-MP-STS has the potential to significantly enhance students’ competencies and abilities, thereby fostering the development of more comprehensive, holistic, and sustainable ITS. This approach also has the potential to enrich the existing literature on the sustainability of neural networks.","PeriodicalId":507997,"journal":{"name":"International Journal of Online and Biomedical Engineering (iJOE)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Online and Biomedical Engineering (iJOE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3991/ijoe.v20i05.47793","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This study proposed a novel framework for redesigning problem-solving activities in an intelligent tutoring system (ITS) called the intelligent neural-mechanistic mathematics problem- solving tutoring system (IN-MP-STS). This concept paper presents a new approach to ITS by incorporating elements of neuroscience mechanisms as a learning strategy that focuses on optimizing the brain’s ability through neural mechanisms. It also introduces fuzzy neural networks (FNNs) as a tool for modulating assessment and analyzing outcomes. This framework offers an alternative perspective on delivery methods and learning approaches in the ITS module. By effectively integrating neuroscience mechanistic elements such as motivation, activation, regulation, execution, memorization, and interactivities, deep learning can be achieved, leading to improved student competence. This framework also proposes an adaptive assessment component based on FNNs, which will enhance the measurement and feedback modules in the system. It is necessary to modify the way that ITS and soft computing methods, such as the study of neural networks (NNs), are combined to make learning measurement and assessment more transparent. This innovation has not been fully disclosed, so researchers are encouraged to further test the concepts presented to assess their alignment with the existing system and ethical considerations. This framework enhances the conceptual research findings of FNNs and incorporates neuroscience-based strategies into architecture and autonomous problem-solving skills within an ITS model. It also offers references for the development of problem-solving learning. IN-MP-STS has the potential to significantly enhance students’ competencies and abilities, thereby fostering the development of more comprehensive, holistic, and sustainable ITS. This approach also has the potential to enrich the existing literature on the sustainability of neural networks.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
智能数学问题解决辅导系统框架
本研究提出了一个新颖的框架,用于重新设计智能辅导系统(ITS)中的问题解决活动,该系统被称为智能神经机制数学问题解决辅导系统(IN-MP-STS)。这篇概念论文提出了一种新的智能辅导系统方法,它将神经科学机制的元素作为一种学习策略,侧重于通过神经机制优化大脑的能力。它还引入了模糊神经网络(FNN)作为调节评估和分析结果的工具。这一框架为 ITS 模块中的授课方式和学习方法提供了另一种视角。通过有效整合动机、激活、调节、执行、记忆和互动等神经科学机制要素,可以实现深度学习,从而提高学生的能力。该框架还提出了基于 FNN 的自适应评估组件,这将增强系统中的测量和反馈模块。有必要修改智能学习系统和软计算方法(如神经网络研究)的结合方式,使学习测量和评估更加透明。这一创新尚未完全公开,因此鼓励研究人员进一步测试所提出的概念,以评估其与现有系统和伦理考虑的一致性。该框架增强了 FNN 的概念研究成果,并将基于神经科学的策略纳入了 ITS 模型中的架构和自主解决问题的技能。它还为问题解决学习的发展提供了参考。IN-MP-STS 有可能显著提高学生的能力和才干,从而促进更全面、整体和可持续的 ITS 的发展。这种方法还有可能丰富现有关于神经网络可持续性的文献。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
XAI-PhD: Fortifying Trust of Phishing URL Detection Empowered by Shapley Additive Explanations Improving the Accuracy of Oncology Diagnosis: A Machine Learning-Based Approach to Cancer Prediction Social Robots, Mindfulness, and Kindergarten Blockchain of Things for Securing and Managing Water 4.0 Applications Intelligent Interconnected Healthcare System: Integrating IoT and Big Data for Personalized Patient Care
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1