{"title":"Improved Complex Convolutional Neural Network Based on SPIRiT and Dense Connection for Parallel MRI Reconstruction","authors":"Jizhong Duan, Xinmin Ren","doi":"10.1049/2024/7006156","DOIUrl":null,"url":null,"abstract":"<div>\n <p>To accelerate the data acquisition speed of magnetic resonance imaging (MRI) and improve the reconstructed MR images’ quality, we propose a parallel MRI reconstruction model (SPIRiT-Net), which combines the iterative self-consistent parallel imaging reconstruction model (SPIRiT) with the cascaded complex convolutional neural networks (CCNNs). More specifically, this model adopts the SPIRiT model for reconstruction in the k-space domain and the cascaded CCNNs with dense connection for reconstruction in the image domain. Meanwhile, this model introduces the data consistency layers for better reconstruction in both the image domain and the k-space domain. The experimental results on two clinical knee datasets as well as the fastMRI brain dataset under different undersampling patterns show that the SPIRiT-Net model achieves better reconstruction performance in terms of visual effect, peak signal-to-noise ratio, and structural similarity over SPIRiT, Deepcomplex, and DONet. It will be beneficial to the diagnosis of clinical medicine.</p>\n </div>","PeriodicalId":56301,"journal":{"name":"IET Signal Processing","volume":"2024 1","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2024-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/2024/7006156","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Signal Processing","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/2024/7006156","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
To accelerate the data acquisition speed of magnetic resonance imaging (MRI) and improve the reconstructed MR images’ quality, we propose a parallel MRI reconstruction model (SPIRiT-Net), which combines the iterative self-consistent parallel imaging reconstruction model (SPIRiT) with the cascaded complex convolutional neural networks (CCNNs). More specifically, this model adopts the SPIRiT model for reconstruction in the k-space domain and the cascaded CCNNs with dense connection for reconstruction in the image domain. Meanwhile, this model introduces the data consistency layers for better reconstruction in both the image domain and the k-space domain. The experimental results on two clinical knee datasets as well as the fastMRI brain dataset under different undersampling patterns show that the SPIRiT-Net model achieves better reconstruction performance in terms of visual effect, peak signal-to-noise ratio, and structural similarity over SPIRiT, Deepcomplex, and DONet. It will be beneficial to the diagnosis of clinical medicine.
期刊介绍:
IET Signal Processing publishes research on a diverse range of signal processing and machine learning topics, covering a variety of applications, disciplines, modalities, and techniques in detection, estimation, inference, and classification problems. The research published includes advances in algorithm design for the analysis of single and high-multi-dimensional data, sparsity, linear and non-linear systems, recursive and non-recursive digital filters and multi-rate filter banks, as well a range of topics that span from sensor array processing, deep convolutional neural network based approaches to the application of chaos theory, and far more.
Topics covered by scope include, but are not limited to:
advances in single and multi-dimensional filter design and implementation
linear and nonlinear, fixed and adaptive digital filters and multirate filter banks
statistical signal processing techniques and analysis
classical, parametric and higher order spectral analysis
signal transformation and compression techniques, including time-frequency analysis
system modelling and adaptive identification techniques
machine learning based approaches to signal processing
Bayesian methods for signal processing, including Monte-Carlo Markov-chain and particle filtering techniques
theory and application of blind and semi-blind signal separation techniques
signal processing techniques for analysis, enhancement, coding, synthesis and recognition of speech signals
direction-finding and beamforming techniques for audio and electromagnetic signals
analysis techniques for biomedical signals
baseband signal processing techniques for transmission and reception of communication signals
signal processing techniques for data hiding and audio watermarking
sparse signal processing and compressive sensing
Special Issue Call for Papers:
Intelligent Deep Fuzzy Model for Signal Processing - https://digital-library.theiet.org/files/IET_SPR_CFP_IDFMSP.pdf