Estimation of Piston Surface Temperature During Engine Transient Operation for Emissions Reduction

Zhijia Yang, Byron Mason, Brian Wooyeol Bae, Fabrizio Bonatesta, E. Winward, Richard Burke, Ed Chappell
{"title":"Estimation of Piston Surface Temperature During Engine Transient Operation for Emissions Reduction","authors":"Zhijia Yang, Byron Mason, Brian Wooyeol Bae, Fabrizio Bonatesta, E. Winward, Richard Burke, Ed Chappell","doi":"10.1115/1.4065061","DOIUrl":null,"url":null,"abstract":"\n Piston surface temperature is an important factor in reducing harmful emissions in modern Gasoline Direct Injection engines. In transient operation, the piston surface temperature can change rapidly, increasing the risk of fuel puddling. The prediction of the piston surface temperature provides the means to significantly improve multiple-pulse fuel injection strategies by avoiding fuel puddling. It can also be used to intelligently control the Piston Cooling Jet (PCJ) which are common on modern engines. Considerable research has been undertaken to identify generalized engine heat transfer correlations and to predict piston and cylinder wall surface temperatures during operation. Most of these correlations require in-cylinder combustion pressure as an input, as well as the identification of numerous model parameters, these render such an approach impractical. In this study, the authors have developed a thermodynamic model of piston surface temperature based on the Global Energy Balance (GEB) methodology, which includes the effect of PCJ activation. The advantages are the simple structure, no requirement for in-cylinder pressure data, and only limited experimental tests are needed for model parameter identification. Moreover, the proposed model works well during engine transient operation, with maximum average error of 6.68% during rapid transients. A detailed identification procedure is given. This, and the model performance, have been demonstrated using experimental piston crown surface temperature data from a prototype 1-liter 3-cylinder turbocharged GDI engine, operated in both engine steady-state and transient conditions with an oil jet used for piston cooling turned both on and off.","PeriodicalId":508252,"journal":{"name":"Journal of Engineering for Gas Turbines and Power","volume":"36 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Engineering for Gas Turbines and Power","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/1.4065061","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Piston surface temperature is an important factor in reducing harmful emissions in modern Gasoline Direct Injection engines. In transient operation, the piston surface temperature can change rapidly, increasing the risk of fuel puddling. The prediction of the piston surface temperature provides the means to significantly improve multiple-pulse fuel injection strategies by avoiding fuel puddling. It can also be used to intelligently control the Piston Cooling Jet (PCJ) which are common on modern engines. Considerable research has been undertaken to identify generalized engine heat transfer correlations and to predict piston and cylinder wall surface temperatures during operation. Most of these correlations require in-cylinder combustion pressure as an input, as well as the identification of numerous model parameters, these render such an approach impractical. In this study, the authors have developed a thermodynamic model of piston surface temperature based on the Global Energy Balance (GEB) methodology, which includes the effect of PCJ activation. The advantages are the simple structure, no requirement for in-cylinder pressure data, and only limited experimental tests are needed for model parameter identification. Moreover, the proposed model works well during engine transient operation, with maximum average error of 6.68% during rapid transients. A detailed identification procedure is given. This, and the model performance, have been demonstrated using experimental piston crown surface temperature data from a prototype 1-liter 3-cylinder turbocharged GDI engine, operated in both engine steady-state and transient conditions with an oil jet used for piston cooling turned both on and off.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
估算发动机瞬态运行期间的活塞表面温度以减少排放
活塞表面温度是现代汽油直喷发动机减少有害气体排放的一个重要因素。在瞬态运行时,活塞表面温度会迅速变化,从而增加燃油积聚的风险。通过预测活塞表面温度,可以避免燃油积聚,从而显著改善多脉冲燃油喷射策略。它还可用于智能控制现代发动机上常见的活塞冷却喷嘴(PCJ)。为了确定通用的发动机传热相关性并预测运行期间的活塞和气缸壁表面温度,已经开展了大量研究。这些相关性大多需要缸内燃烧压力作为输入,还需要确定大量模型参数,因此这种方法并不实用。在这项研究中,作者基于全球能量平衡(GEB)方法开发了活塞表面温度的热力学模型,其中包括 PCJ 激活的影响。该模型的优点是结构简单,不需要气缸内压力数据,只需进行有限的实验测试即可确定模型参数。此外,所提出的模型在发动机瞬态运行期间运行良好,在快速瞬态期间的最大平均误差为 6.68%。文中给出了详细的识别程序。利用一台原型 1 升 3 缸涡轮增压 GDI 发动机的活塞冠表面温度实验数据,在发动机稳态和瞬态条件下,同时打开和关闭用于活塞冷却的喷油装置,证明了这一点以及模型的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Liquid Cooling of Fuel Cell Powered Aircraft: The Effect of Coolants on Thermal Management Development of 1400°C(2552°F) class Ceramic Matrix Composite Turbine Shroud and Demonstration Test with JAXA F7 Aircraft Engine Comparative Analysis of Total Pressure Measurement Techniques in Rotating Detonation Combustors Prediction of Soot in an RQL Burner Using a Semi-Detailed Jeta-1 Chemistry Nox Emissions Assessment of a Multi Jet Burner Operated with Premixed High Hydrogen Natural Gas Blends
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1