{"title":"Data Center Environmental Burden Reduction Through On-Site Renewable Power Generation","authors":"Matthew McMullen, A. Wemhoff","doi":"10.1115/1.4065053","DOIUrl":null,"url":null,"abstract":"\n The energy demands from data centers contribute greatly to water scarcity footprint and carbon emissions. Understanding the use of on-site renewable power generation is an important step to gain insight into making data centers more sustainable. This novel study examines the impact of on-site solar or wind energy on data center water scarcity usage effectiveness (WSUE) and carbon usage effectiveness (CUE) at a U.S. county scale for a given data center size, water consumption level, and energy efficiency. The analysis uncovers combinations of specific metrics associated with grid-based carbon emissions and water scarcity footprint that enable predictions of the improvements anticipated when implementing on-site solar or wind energy. The implementation of on-site renewables has the most benefit in reducing carbon footprint in areas with high existing grid-based emissions such as the western side of the Appalachian Mountains (e.g., central and eastern Kentucky). The largest benefit in reducing water scarcity footprint is generally seen in counties with low water scarcity compared to adjacent areas (e.g., northern California).","PeriodicalId":326594,"journal":{"name":"ASME Journal of Engineering for Sustainable Buildings and Cities","volume":"6 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ASME Journal of Engineering for Sustainable Buildings and Cities","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/1.4065053","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The energy demands from data centers contribute greatly to water scarcity footprint and carbon emissions. Understanding the use of on-site renewable power generation is an important step to gain insight into making data centers more sustainable. This novel study examines the impact of on-site solar or wind energy on data center water scarcity usage effectiveness (WSUE) and carbon usage effectiveness (CUE) at a U.S. county scale for a given data center size, water consumption level, and energy efficiency. The analysis uncovers combinations of specific metrics associated with grid-based carbon emissions and water scarcity footprint that enable predictions of the improvements anticipated when implementing on-site solar or wind energy. The implementation of on-site renewables has the most benefit in reducing carbon footprint in areas with high existing grid-based emissions such as the western side of the Appalachian Mountains (e.g., central and eastern Kentucky). The largest benefit in reducing water scarcity footprint is generally seen in counties with low water scarcity compared to adjacent areas (e.g., northern California).