Differentiating Single Multiple Nanopore Through Conductance Distribution Analysis

Shengfa Liang, Yu Liu, Feibin Xiang, Zhihong Yao, Wenchang Zhang, Weihua Guan
{"title":"Differentiating Single Multiple Nanopore Through Conductance Distribution Analysis","authors":"Shengfa Liang,&nbsp;Yu Liu,&nbsp;Feibin Xiang,&nbsp;Zhihong Yao,&nbsp;Wenchang Zhang,&nbsp;Weihua Guan","doi":"10.1002/adsr.202300196","DOIUrl":null,"url":null,"abstract":"<p>Solid-state nanopore sensors, a type of resistive pulse sensing, achieve optimal signal-to-noise performance with a single nanopore. However, the processes involved in solid-state nanopore fabrication and subsequent measurements frequently lead to the formation of multiple nanopores, posing a challenge for precise detection. To address this issue, here, a novel and expedient technique to verify the presence of a single nanopore on a chip is developed. The methodology includes measuring the nanopore's conductance in solutions of various salt conditions, followed by a comparison of these results against a theoretical conductance model. This comparison is instrumental in distinguishing between single and multiple nanopores. Additionally, the study delves into various factors that influence the conductance curve, such as deviations in pore shape from the standard circle and inconsistencies in pore diameter. This approach significantly enhances the practical application of low-cost nanopore preparation techniques, particularly in scenarios like controlled breakdown nanopore fabrication, where the formation of multiple nanopores is a common concern.</p>","PeriodicalId":100037,"journal":{"name":"Advanced Sensor Research","volume":"3 7","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/adsr.202300196","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Sensor Research","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/adsr.202300196","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Solid-state nanopore sensors, a type of resistive pulse sensing, achieve optimal signal-to-noise performance with a single nanopore. However, the processes involved in solid-state nanopore fabrication and subsequent measurements frequently lead to the formation of multiple nanopores, posing a challenge for precise detection. To address this issue, here, a novel and expedient technique to verify the presence of a single nanopore on a chip is developed. The methodology includes measuring the nanopore's conductance in solutions of various salt conditions, followed by a comparison of these results against a theoretical conductance model. This comparison is instrumental in distinguishing between single and multiple nanopores. Additionally, the study delves into various factors that influence the conductance curve, such as deviations in pore shape from the standard circle and inconsistencies in pore diameter. This approach significantly enhances the practical application of low-cost nanopore preparation techniques, particularly in scenarios like controlled breakdown nanopore fabrication, where the formation of multiple nanopores is a common concern.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过电导分布分析区分单个多个纳米孔
固态纳米孔传感器是一种电阻脉冲传感技术,通过单个纳米孔实现最佳信噪比性能。然而,固态纳米孔的制造和后续测量过程经常会形成多个纳米孔,这给精确检测带来了挑战。为解决这一问题,本文开发了一种新颖、便捷的技术,用于验证芯片上是否存在单个纳米孔。该方法包括测量纳米孔在各种盐溶液中的电导,然后将这些结果与理论电导模型进行比较。这种比较有助于区分单纳米孔和多纳米孔。此外,研究还深入探讨了影响电导曲线的各种因素,如孔隙形状与标准圆的偏差以及孔隙直径的不一致。这种方法大大提高了低成本纳米孔制备技术的实际应用,特别是在受控击穿纳米孔制造等情况下,多纳米孔的形成是一个常见问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Self-Powered, Soft and Breathable Human–Machine Interface Based on Piezoelectric Sensors (Adv. Sensor Res. 12/2024) Masthead (Adv. Sensor Res. 12/2024) Nanoflowers Templated CuO/Cu Hybrid Metasurface for Sensitive THz-TDS Detection of Acetylcholine (Adv. Sensor Res. 12/2024) Transforming Renal Diagnosis: Graphene-Enhanced Lab-On-a-Chip for Multiplexed Kidney Biomarker Detection in Capillary Blood (Adv. Sensor Res. 11/2024) Masthead (Adv. Sensor Res. 11/2024)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1