Detection and confirmation of electricity thefts in Advanced Metering Infrastructure by Long Short-Term Memory and fuzzy inference system models

Abdulrahaman Okino Otuoze, M. W. Mustafa, U. Sultana, E. A. Abiodun, B. Jimada-Ojuolape, O. Ibrahim, I. O. Avazi-Omeiza, A. I. Abdullateef
{"title":"Detection and confirmation of electricity thefts in Advanced Metering Infrastructure by Long Short-Term Memory and fuzzy inference system models","authors":"Abdulrahaman Okino Otuoze, M. W. Mustafa, U. Sultana, E. A. Abiodun, B. Jimada-Ojuolape, O. Ibrahim, I. O. Avazi-Omeiza, A. I. Abdullateef","doi":"10.4314/njtd.v21i1.2294","DOIUrl":null,"url":null,"abstract":"The successful implementation of Smart Grids heavily relies on energy efficiency, particularly through the Advanced Metering Infrastructure (AMI) and Smart Electricity Meters (SEM). However, cyber-attacks pose a threat to SEM, with electricity theft being a primary motivation. Despite the valuable data provided by SEM for analytical purposes, existing methods to identify theft involve cumbersome and costly on-site inspections. This research proposes an electricity theft detection model using the Long Short-Term Memory (LSTM) network. The model employs a collective anomaly approach, defining prediction errors through a threshold and forecast horizon. Suspicious consumption profiles are analysed, and a fuzzy inference system (FIS) implemented in MATLAB 2021b is used to model security risks based on these profiles. The study utilizes energy consumption data from four diverse consumer profiles (consumers 1, 2, 3, and 4) to develop consumer-specific LSTM models for detection and an FIS model for confirmation. Tampered consumer data is identified and confirmed based on selected AMI parameters. While all consumers exhibit suspicious profiles at times, only consumers 2 and 3 are confirmed as engaging in electricity theft. This research provides a robust approach to detecting and verifying fraudulent consumption profiles within the context of AMI, offering a more reliable dimension to theft detection and confirmation.","PeriodicalId":31273,"journal":{"name":"Nigerian Journal of Technological Development","volume":"137 6","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nigerian Journal of Technological Development","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4314/njtd.v21i1.2294","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

Abstract

The successful implementation of Smart Grids heavily relies on energy efficiency, particularly through the Advanced Metering Infrastructure (AMI) and Smart Electricity Meters (SEM). However, cyber-attacks pose a threat to SEM, with electricity theft being a primary motivation. Despite the valuable data provided by SEM for analytical purposes, existing methods to identify theft involve cumbersome and costly on-site inspections. This research proposes an electricity theft detection model using the Long Short-Term Memory (LSTM) network. The model employs a collective anomaly approach, defining prediction errors through a threshold and forecast horizon. Suspicious consumption profiles are analysed, and a fuzzy inference system (FIS) implemented in MATLAB 2021b is used to model security risks based on these profiles. The study utilizes energy consumption data from four diverse consumer profiles (consumers 1, 2, 3, and 4) to develop consumer-specific LSTM models for detection and an FIS model for confirmation. Tampered consumer data is identified and confirmed based on selected AMI parameters. While all consumers exhibit suspicious profiles at times, only consumers 2 and 3 are confirmed as engaging in electricity theft. This research provides a robust approach to detecting and verifying fraudulent consumption profiles within the context of AMI, offering a more reliable dimension to theft detection and confirmation.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用长短期记忆和模糊推理系统模型检测和确认高级计量基础设施中的窃电行为
智能电网的成功实施在很大程度上依赖于能源效率,特别是通过先进计量基础设施(AMI)和智能电表(SEM)。然而,网络攻击对 SEM 构成了威胁,偷电是其主要动机。尽管智能电表为分析目的提供了宝贵的数据,但现有的窃电识别方法涉及繁琐而昂贵的现场检查。本研究提出了一种使用长短期记忆(LSTM)网络的窃电检测模型。该模型采用集体异常方法,通过阈值和预测范围来定义预测误差。对可疑的消耗曲线进行了分析,并使用在 MATLAB 2021b 中实施的模糊推理系统 (FIS) 对基于这些曲线的安全风险进行建模。该研究利用四种不同消费者(消费者 1、2、3 和 4)的能源消耗数据,开发了用于检测的特定消费者 LSTM 模型和用于确认的 FIS 模型。根据选定的 AMI 参数识别和确认被篡改的用户数据。虽然所有消费者有时都表现出可疑特征,但只有消费者 2 和 3 被证实参与了窃电行为。这项研究提供了一种在 AMI 背景下检测和验证欺诈性消费特征的可靠方法,为窃电检测和确认提供了一个更可靠的维度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Nigerian Journal of Technological Development
Nigerian Journal of Technological Development Engineering-Engineering (miscellaneous)
CiteScore
1.00
自引率
0.00%
发文量
40
审稿时长
24 weeks
期刊最新文献
Evaluation of MgO-ZnO-Crab Shell Biofillers as Reinforcement for Biodegradable Polylactic Acid (PLA) Composite Impact of Rice Husk Ash Based-Geopolymer on Some Geotechnical Properties of Selected Residual Tropical Soils ANFIS-based Indoor localization and Tracking in Wireless Sensor Networking Characterization And Impact Of Cutting Parameters On Face-Milled Surfaces Of Pearlitic Ductile Iron Detection and confirmation of electricity thefts in Advanced Metering Infrastructure by Long Short-Term Memory and fuzzy inference system models
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1