Evaluation and Re-Estimation of Bankruptcy Prediction Models in Facing The Crisis Period in Indonesia (2017-2022)

Mentari M. Lubis, Imo Gandakusuma
{"title":"Evaluation and Re-Estimation of Bankruptcy Prediction Models in Facing The Crisis Period in Indonesia (2017-2022)","authors":"Mentari M. Lubis, Imo Gandakusuma","doi":"10.36418/syntax-literate.v9i3.14760","DOIUrl":null,"url":null,"abstract":"This research was conducted to see how suitable the existing bankruptcy prediction models that have been used in other countries to be used during the crisis in Indonesia. The data used in research are companies in Indonesia registered in the Indonesia Stock Exchange (IDX). The re-estimate of the coefficient of variables models is carried out and then the bankruptcy prediction of the re-estimation model is re-calculated. The results of the bankruptcy prediction of the re-estimate model are then compared with the results of the bankruptcy prediction of the original model to see whether the model can be used during the crisis in Indonesia. The results of the study is that Springate original model is the most suitable model for the conditions in Indonesia during the crisis caused by the COVID-19 pandemic. The Springate model has the highest financial distress prediction accuracy, while the Altman Emerging Market model produces the highest Error Type I.","PeriodicalId":510711,"journal":{"name":"Syntax Literate ; Jurnal Ilmiah Indonesia","volume":"13 2","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Syntax Literate ; Jurnal Ilmiah Indonesia","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.36418/syntax-literate.v9i3.14760","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This research was conducted to see how suitable the existing bankruptcy prediction models that have been used in other countries to be used during the crisis in Indonesia. The data used in research are companies in Indonesia registered in the Indonesia Stock Exchange (IDX). The re-estimate of the coefficient of variables models is carried out and then the bankruptcy prediction of the re-estimation model is re-calculated. The results of the bankruptcy prediction of the re-estimate model are then compared with the results of the bankruptcy prediction of the original model to see whether the model can be used during the crisis in Indonesia. The results of the study is that Springate original model is the most suitable model for the conditions in Indonesia during the crisis caused by the COVID-19 pandemic. The Springate model has the highest financial distress prediction accuracy, while the Altman Emerging Market model produces the highest Error Type I.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
印度尼西亚危机时期(2017-2022 年)破产预测模型的评估与再估计
本研究旨在了解在其他国家使用的现有破产预测模型在印尼危机期间的适用性。研究使用的数据是在印尼证券交易所(IDX)注册的印尼公司。对变量模型的系数进行重新估计,然后重新计算重新估计模型的破产预测结果。然后将重新估计模型的破产预测结果与原始模型的破产预测结果进行比较,以确定该模型是否可在印尼危机期间使用。研究结果表明,Springate 原始模型是最适合印尼 COVID-19 大流行病危机期间情况的模型。Springate 模型的财务困境预测准确率最高,而 Altman 新兴市场模型的 I 型误差最高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Variasi Debit Aliran dan Padat Tebar pada Pemeliharaan Sistem Resirkulasi untuk Meningkatkan Kelangsungan Hidup dan Pertumbuhan Ikan Nila (Oreochromis Niloticus) Indeks Wiener dari Graf Identitas dan Graf Pangkat pada Grup Siklis Berhingga Pemanfaatan Flipped Classroom pada Mata Pelajaran Bahasa Dayak dalam Rangka Meningkatkan Keaktifan Siswa dalam Proses Pembelajaran Profil Genotipik Extraintestinal pathogenic Escherichia coli (ExPEC) Penyebab Bloodstream Infection Menggunakan Whole Genome Sequencing: Literatur Review Conflict, Job Stress, Satisfaction and Its Effect on Performance
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1