Analysis of the Application of Machine Vision in the Automation Control of Power Electronic Equipment

Q3 Multidisciplinary Archives Des Sciences Pub Date : 2024-03-10 DOI:10.62227/as/74115
Jieping Zhang
{"title":"Analysis of the Application of Machine Vision in the Automation Control of Power Electronic Equipment","authors":"Jieping Zhang","doi":"10.62227/as/74115","DOIUrl":null,"url":null,"abstract":"This research centers on the application of machine vision in the automation control of power electronic equipment, and the purpose of the research is to improve the operation efficiency and safety of power equipment. The research combines PLC and IoT technology to build an intelligent monitoring system, which uses machine vision technology to recognize the state of power electronic equipment. The research results show that the system achieves 98\\% accuracy in switchgear image recognition, and the SIFT algorithm performs superiorly in equipment state recognition, with the shortest recognition time being 7.17 seconds and the longest not exceeding 29.98 seconds. Machine vision technology effectively improves the automation and intelligence level of power equipment, which is of great significance to the development of power industry.","PeriodicalId":55478,"journal":{"name":"Archives Des Sciences","volume":"54 4","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archives Des Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.62227/as/74115","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Multidisciplinary","Score":null,"Total":0}
引用次数: 0

Abstract

This research centers on the application of machine vision in the automation control of power electronic equipment, and the purpose of the research is to improve the operation efficiency and safety of power equipment. The research combines PLC and IoT technology to build an intelligent monitoring system, which uses machine vision technology to recognize the state of power electronic equipment. The research results show that the system achieves 98\% accuracy in switchgear image recognition, and the SIFT algorithm performs superiorly in equipment state recognition, with the shortest recognition time being 7.17 seconds and the longest not exceeding 29.98 seconds. Machine vision technology effectively improves the automation and intelligence level of power equipment, which is of great significance to the development of power industry.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
机器视觉在电力电子设备自动化控制中的应用分析
本研究的核心是机器视觉在电力电子设备自动化控制中的应用,研究目的是提高电力设备的运行效率和安全性。研究将 PLC 和物联网技术相结合,构建了一个智能监控系统,利用机器视觉技术识别电力电子设备的状态。研究结果表明,该系统在开关柜图像识别方面的准确率达到98%,SIFT算法在设备状态识别方面表现优异,识别时间最短为7.17秒,最长不超过29.98秒。机器视觉技术有效提高了电力设备的自动化和智能化水平,对电力行业的发展具有重要意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Archives Des Sciences
Archives Des Sciences 综合性期刊-综合性期刊
CiteScore
1.10
自引率
0.00%
发文量
0
审稿时长
1 months
期刊介绍: Archives des Sciences est un journal scientifique multidisciplinaire et international. Les articles sont soumis à un comité de lecture.
期刊最新文献
Teaching Innovation of Core Literacy in Physical Education and Health Courses in Colleges and Universities Based on Multiple Regression Modeling Status and Challenges of Schooling Effectiveness in Malo-Koza District of Gofa Zone, Ethiopia Choosing Professional Supporting Means to Improve Topspin Forehand Tennis Ball Technique for Students in Physical Education at Hong Duc University Research on Homework in ELT: A Systematic Review Military-Aggressive Crime as A Subject of War Criminology
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1