N. d’Avanzo, Antonia Mancuso, R. Mare, Antonio Silletta, S. Maurotti, O. I. Parisi, M. Cristiano, D. Paolino
{"title":"Olive Leaves and Citrus Peels: From Waste to Potential Resource for Cosmetic Products","authors":"N. d’Avanzo, Antonia Mancuso, R. Mare, Antonio Silletta, S. Maurotti, O. I. Parisi, M. Cristiano, D. Paolino","doi":"10.3390/cosmetics11020041","DOIUrl":null,"url":null,"abstract":"Resource depletion and food waste accumulation represent a tremendous socio-economic and environmental problem. One promising strategy involves the use of byproducts derived from food waste as ingredients for cosmetic products. The aim of this work is to propose clementine peels and olive leaf extracts as value-added bioproducts for a cosmetic cream. Extracts were obtained by super critical extraction showing an antioxidant activity of ca. 25%. No cytotoxic effects of the extracts were recorded on keratinocyte cells up to a concentration of 4% v/v ratio within 24 h. The incorporation of clementine peels and olive leaf extracts into creams did not compromise their stability, as demonstrated by Turbiscan analyses at room and extreme (40 °C) storage conditions. The safety profiles of the final cosmetic formulations were further in vivo demonstrated on human volunteers. We analyzed the trans-epidermal water loss and variation of the skin’s erythematous index, which showed profiles that almost overlapped with the negative control. Moreover, rheological analysis of the resulting creams evidences their suitable spreadability with similar pseudoplastic profiles, although a slight reduction of viscosity was recorded by improving the extracts’ concentrations. The proposed approach highlights the advantage of combining byproduct resources and supercritical fluid extraction to obtain a safe and eco-friendly face cream.","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":"32 20","pages":""},"PeriodicalIF":4.7000,"publicationDate":"2024-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/cosmetics11020041","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Resource depletion and food waste accumulation represent a tremendous socio-economic and environmental problem. One promising strategy involves the use of byproducts derived from food waste as ingredients for cosmetic products. The aim of this work is to propose clementine peels and olive leaf extracts as value-added bioproducts for a cosmetic cream. Extracts were obtained by super critical extraction showing an antioxidant activity of ca. 25%. No cytotoxic effects of the extracts were recorded on keratinocyte cells up to a concentration of 4% v/v ratio within 24 h. The incorporation of clementine peels and olive leaf extracts into creams did not compromise their stability, as demonstrated by Turbiscan analyses at room and extreme (40 °C) storage conditions. The safety profiles of the final cosmetic formulations were further in vivo demonstrated on human volunteers. We analyzed the trans-epidermal water loss and variation of the skin’s erythematous index, which showed profiles that almost overlapped with the negative control. Moreover, rheological analysis of the resulting creams evidences their suitable spreadability with similar pseudoplastic profiles, although a slight reduction of viscosity was recorded by improving the extracts’ concentrations. The proposed approach highlights the advantage of combining byproduct resources and supercritical fluid extraction to obtain a safe and eco-friendly face cream.
期刊介绍:
ACS Applied Electronic Materials is an interdisciplinary journal publishing original research covering all aspects of electronic materials. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials science, engineering, optics, physics, and chemistry into important applications of electronic materials. Sample research topics that span the journal's scope are inorganic, organic, ionic and polymeric materials with properties that include conducting, semiconducting, superconducting, insulating, dielectric, magnetic, optoelectronic, piezoelectric, ferroelectric and thermoelectric.
Indexed/Abstracted:
Web of Science SCIE
Scopus
CAS
INSPEC
Portico