Nonlocal-Strain-Gradient-Based Anisotropic Elastic Shell Model for Vibrational Analysis of Single-Walled Carbon Nanotubes

C Pub Date : 2024-03-07 DOI:10.3390/c10010024
Matteo Strozzi, Isaac Elishakoff, Michele Bochicchio, M. Cocconcelli, R. Rubini, Enrico Radi
{"title":"Nonlocal-Strain-Gradient-Based Anisotropic Elastic Shell Model for Vibrational Analysis of Single-Walled Carbon Nanotubes","authors":"Matteo Strozzi, Isaac Elishakoff, Michele Bochicchio, M. Cocconcelli, R. Rubini, Enrico Radi","doi":"10.3390/c10010024","DOIUrl":null,"url":null,"abstract":"In this study, a new anisotropic elastic shell model with a nonlocal strain gradient is developed to investigate the vibrations of simply supported single-walled carbon nanotubes (SWCNTs). The Sanders–Koiter shell theory is used to obtain strain–displacement relationships. Eringen’s nonlocal elasticity and Mindlin’s strain gradient theories are adopted to derive the constitutive equations, where the anisotropic elasticity constants are expressed via Chang’s molecular mechanics model. An analytical method is used to solve the equations of motion and to obtain the natural frequencies of SWCNTs. First, the anisotropic elastic shell model without size effects is validated through comparison with the results of molecular dynamics simulations reported in the literature. Then, the effects of the nonlocal and material parameters on the natural frequencies of SWCNTs with different geometries and wavenumbers are analyzed. From the numerical simulations, it is confirmed that the natural frequencies decrease as the nonlocal parameter increases, while they increase as the material parameter increases. As new results, the reduction in natural frequencies with increasing SWCNT radius and the increase in natural frequencies with increasing wavenumber are both amplified as the material parameter increases, while they are both attenuated as the nonlocal parameter increases.","PeriodicalId":9397,"journal":{"name":"C","volume":"58 23","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"C","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/c10010024","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this study, a new anisotropic elastic shell model with a nonlocal strain gradient is developed to investigate the vibrations of simply supported single-walled carbon nanotubes (SWCNTs). The Sanders–Koiter shell theory is used to obtain strain–displacement relationships. Eringen’s nonlocal elasticity and Mindlin’s strain gradient theories are adopted to derive the constitutive equations, where the anisotropic elasticity constants are expressed via Chang’s molecular mechanics model. An analytical method is used to solve the equations of motion and to obtain the natural frequencies of SWCNTs. First, the anisotropic elastic shell model without size effects is validated through comparison with the results of molecular dynamics simulations reported in the literature. Then, the effects of the nonlocal and material parameters on the natural frequencies of SWCNTs with different geometries and wavenumbers are analyzed. From the numerical simulations, it is confirmed that the natural frequencies decrease as the nonlocal parameter increases, while they increase as the material parameter increases. As new results, the reduction in natural frequencies with increasing SWCNT radius and the increase in natural frequencies with increasing wavenumber are both amplified as the material parameter increases, while they are both attenuated as the nonlocal parameter increases.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于单壁碳纳米管振动分析的基于非局部应变梯度的各向异性弹性壳模型
本研究建立了一个具有非局部应变梯度的新型各向异性弹性壳模型,用于研究简单支撑的单壁碳纳米管(SWCNTs)的振动。利用 Sanders-Koiter 壳理论获得了应变-位移关系。采用 Eringen 的非局部弹性理论和 Mindlin 的应变梯度理论推导出构成方程,其中各向异性弹性常数通过 Chang 的分子力学模型表示。采用分析方法求解运动方程,并得出 SWCNT 的固有频率。首先,通过与文献报道的分子动力学模拟结果进行比较,验证了无尺寸效应的各向异性弹性壳模型。然后,分析了非局部参数和材料参数对不同几何形状和波数的 SWCNT 自然频率的影响。数值模拟证实,自然频率随着非局部参数的增加而降低,而随着材料参数的增加而升高。新的结果是,随着材料参数的增加,自然频率随 SWCNT 半径的增加而降低,自然频率随波长的增加而升高;而随着非局部参数的增加,自然频率随波长的增加而减弱。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
C
C
自引率
0.00%
发文量
0
期刊最新文献
Synthesis of Ni@SiC/CNFs Composite and Its Microwave-Induced Catalytic Activity Novel Superhard Tetragonal Hybrid sp3/sp2 Carbon Allotropes Cx (x = 5, 6, 7): Crystal Chemistry and Ab Initio Studies Unveiling the Structure of Metal–Nanodiamonds Bonds: Experiment and Theory Photocatalytic N-Formylation of CO2 with Amines Catalyzed by Diethyltriamine Pentaacetic Acid Enhanced Adsorption of Arsenate from Contaminated Waters by Magnesium-, Zinc- or Calcium-Modified Biochar—Modeling and Mechanisms
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1