The gut metagenome harbors metabolic and antibiotic resistance signatures of moderate-to-severe asthma

Naomi G. Wilson, Ariel Hernandez-Leyva, Drew J Schwartz, Leonard B. Bacharier, A. Kau
{"title":"The gut metagenome harbors metabolic and antibiotic resistance signatures of moderate-to-severe asthma","authors":"Naomi G. Wilson, Ariel Hernandez-Leyva, Drew J Schwartz, Leonard B. Bacharier, A. Kau","doi":"10.1093/femsmc/xtae010","DOIUrl":null,"url":null,"abstract":"\n Asthma is a common allergic airway disease that has been associated with the development of the human microbiome early in life. Both the composition and function of the infant gut microbiota have been linked to asthma risk, but functional alterations in the gut microbiota of older patients with established asthma remain an important knowledge gap. Here, we performed whole metagenomic shotgun sequencing of 95 stool samples from a cross-sectional cohort of 59 healthy and 36 subjects with moderate-to-severe asthma to characterize the metagenomes of gut microbiota in adults and children 6 years and older. Mapping of functional orthologs revealed that asthma contributes to 2.9% of the variation in metagenomic content even when accounting for other important clinical demographics. Differential abundance analysis showed an enrichment of long-chain fatty acid (LCFA) metabolism pathways which have been previously implicated in airway smooth muscle and immune responses in asthma. We also observed increased richness of antibiotic resistance genes (ARGs) in people with asthma. Several differentially abundant ARGs in the asthma cohort encode resistance to macrolide antibiotics, which are often prescribed to patients with asthma. Lastly, we found that ARG and virulence factor (VF) richness in the microbiome were correlated in both cohorts. ARG and VF pairs co-occurred in both cohorts suggesting that virulence and antibiotic resistance traits are co-selected and maintained in the fecal microbiota of people with asthma. Overall, our results show functional alterations via LCFA biosynthetic genes and increases in antibiotic resistance genes in the gut microbiota of subjects with moderate-to-severe asthma and could have implications for asthma management and treatment.","PeriodicalId":73024,"journal":{"name":"FEMS microbes","volume":"27 4","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"FEMS microbes","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/femsmc/xtae010","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Asthma is a common allergic airway disease that has been associated with the development of the human microbiome early in life. Both the composition and function of the infant gut microbiota have been linked to asthma risk, but functional alterations in the gut microbiota of older patients with established asthma remain an important knowledge gap. Here, we performed whole metagenomic shotgun sequencing of 95 stool samples from a cross-sectional cohort of 59 healthy and 36 subjects with moderate-to-severe asthma to characterize the metagenomes of gut microbiota in adults and children 6 years and older. Mapping of functional orthologs revealed that asthma contributes to 2.9% of the variation in metagenomic content even when accounting for other important clinical demographics. Differential abundance analysis showed an enrichment of long-chain fatty acid (LCFA) metabolism pathways which have been previously implicated in airway smooth muscle and immune responses in asthma. We also observed increased richness of antibiotic resistance genes (ARGs) in people with asthma. Several differentially abundant ARGs in the asthma cohort encode resistance to macrolide antibiotics, which are often prescribed to patients with asthma. Lastly, we found that ARG and virulence factor (VF) richness in the microbiome were correlated in both cohorts. ARG and VF pairs co-occurred in both cohorts suggesting that virulence and antibiotic resistance traits are co-selected and maintained in the fecal microbiota of people with asthma. Overall, our results show functional alterations via LCFA biosynthetic genes and increases in antibiotic resistance genes in the gut microbiota of subjects with moderate-to-severe asthma and could have implications for asthma management and treatment.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
肠道元基因组蕴藏着中重度哮喘的代谢和抗生素耐药性特征
哮喘是一种常见的过敏性气道疾病,与生命早期人类微生物群的发育有关。婴儿肠道微生物群的组成和功能都与哮喘风险有关,但老年哮喘患者肠道微生物群的功能改变仍然是一个重要的知识空白。在这里,我们对来自 59 名健康人和 36 名中重度哮喘患者的 95 份横断面队列粪便样本进行了整个元基因组枪式测序,以描述成人和 6 岁及以上儿童肠道微生物群元基因组的特征。功能直向同源物图谱显示,即使考虑到其他重要的临床人口统计学因素,哮喘也占元基因组内容变化的 2.9%。差异丰度分析表明,长链脂肪酸(LCFA)代谢通路的含量丰富,这与哮喘患者的气道平滑肌和免疫反应有关。我们还观察到哮喘患者的抗生素耐药基因(ARGs)丰富度有所增加。哮喘患者队列中几个不同程度丰富的 ARGs 编码对大环内酯类抗生素的耐药性,而哮喘患者通常服用大环内酯类抗生素。最后,我们发现在两个队列中,微生物组中 ARG 和毒力因子(VF)的丰富程度是相关的。ARG和VF对在两个队列中同时出现,这表明哮喘患者粪便微生物群中的毒力和抗生素耐药性特征是共同选择和维持的。总之,我们的研究结果表明,在中重度哮喘患者的肠道微生物群中,LCFA 生物合成基因发生了功能性改变,抗生素耐药性基因增加,这可能对哮喘的管理和治疗产生影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
3.30
自引率
0.00%
发文量
0
审稿时长
15 weeks
期刊最新文献
Evaluating the impact of redox potential on the growth capacity of anaerobic gut fungi. Contact with young children is a major risk factor for pneumococcal colonization in older adults. Trivalent immunization with metal-binding proteins confers protection against enterococci in a mouse infection model. Arginine impacts aggregation, biofilm formation, and antibiotic susceptibility in Enterococcus faecalis. Pandemic storytelling and student engagement: how students imagined pandemics before COVID-19 pandemic.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1