Kumudu Madhawa Kurugama, So Kazama, Yusuke Hiraga, Chaminda Samarasuriya
{"title":"A comparative spatial analysis of flood susceptibility mapping using boosting machine learning algorithms in Rathnapura, Sri Lanka","authors":"Kumudu Madhawa Kurugama, So Kazama, Yusuke Hiraga, Chaminda Samarasuriya","doi":"10.1111/jfr3.12980","DOIUrl":null,"url":null,"abstract":"<p>Identifying flood-prone areas is essential for preventing floods, reducing risks, and making informed decisions. A spatial database with 595 flood inventory and 13 flood predictors were used to implement five boosting algorithms: gradient boosting machine (GBM), extreme gradient boosting, categorical boosting, logit boost, and light gradient boosting machine (LGBM) to map flood susceptibility in Rathnapura while evaluating trained model's generalizing ability and assessing the feature importance in flood susceptibility mapping (FSM). The model performance was evaluated using the F1-score, kappa index, and area under curve (AUC) method. The findings revealed that all the models were effective in identifying the overall flood susceptibility trends while LightGBM model had superior results (F1-score = 0.907, Kappa value = 0.813 and AUC = 0.970), securing the top scores across all performance metrics compared to the other models (for testing dataset). Based on kappa evaluation, most of the models had finer performance (AUC <sub>min</sub> = 0.737) while LightGBM had moderate performance for predictions beyond the training region. According to the results, regions with lower altitudes and topographic roughness values, moderate rainfall, and proximity to rivers are more susceptible to flooding. This framework can be adapted for rapid FSM in data-deficient regions.</p>","PeriodicalId":49294,"journal":{"name":"Journal of Flood Risk Management","volume":"17 2","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2024-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/jfr3.12980","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Flood Risk Management","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/jfr3.12980","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Identifying flood-prone areas is essential for preventing floods, reducing risks, and making informed decisions. A spatial database with 595 flood inventory and 13 flood predictors were used to implement five boosting algorithms: gradient boosting machine (GBM), extreme gradient boosting, categorical boosting, logit boost, and light gradient boosting machine (LGBM) to map flood susceptibility in Rathnapura while evaluating trained model's generalizing ability and assessing the feature importance in flood susceptibility mapping (FSM). The model performance was evaluated using the F1-score, kappa index, and area under curve (AUC) method. The findings revealed that all the models were effective in identifying the overall flood susceptibility trends while LightGBM model had superior results (F1-score = 0.907, Kappa value = 0.813 and AUC = 0.970), securing the top scores across all performance metrics compared to the other models (for testing dataset). Based on kappa evaluation, most of the models had finer performance (AUC min = 0.737) while LightGBM had moderate performance for predictions beyond the training region. According to the results, regions with lower altitudes and topographic roughness values, moderate rainfall, and proximity to rivers are more susceptible to flooding. This framework can be adapted for rapid FSM in data-deficient regions.
期刊介绍:
Journal of Flood Risk Management provides an international platform for knowledge sharing in all areas related to flood risk. Its explicit aim is to disseminate ideas across the range of disciplines where flood related research is carried out and it provides content ranging from leading edge academic papers to applied content with the practitioner in mind.
Readers and authors come from a wide background and include hydrologists, meteorologists, geographers, geomorphologists, conservationists, civil engineers, social scientists, policy makers, insurers and practitioners. They share an interest in managing the complex interactions between the many skills and disciplines that underpin the management of flood risk across the world.