{"title":"Meta-Learning: Adaptive and Fast Learning Systems","authors":"Morshed Alom","doi":"10.60087/jaigs.v2i1.p97","DOIUrl":null,"url":null,"abstract":"Meta-learning has emerged as a powerful paradigm in machine learning, enabling adaptive and fast learning systems capable of efficiently acquiring knowledge from various tasks and domains. This paper provides an overview of meta-learning techniques, focusing on their ability to leverage prior experience to facilitate the learning of new tasks. We explore the fundamental concepts, methodologies, and applications of meta-learning, emphasizing its role in enhancing the adaptability and speed of learning systems. By incorporating meta-learning strategies, algorithms can autonomously adapt to new tasks and data distributions, thereby improving performance and efficiency across diverse domains. This review sheds light on the current state-of-the-art in meta-learning research and highlights its potential implications for the future of artificial intelligence. \n ","PeriodicalId":517201,"journal":{"name":"Journal of Artificial Intelligence General science (JAIGS) ISSN:3006-4023","volume":"13 8","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Artificial Intelligence General science (JAIGS) ISSN:3006-4023","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.60087/jaigs.v2i1.p97","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Meta-learning has emerged as a powerful paradigm in machine learning, enabling adaptive and fast learning systems capable of efficiently acquiring knowledge from various tasks and domains. This paper provides an overview of meta-learning techniques, focusing on their ability to leverage prior experience to facilitate the learning of new tasks. We explore the fundamental concepts, methodologies, and applications of meta-learning, emphasizing its role in enhancing the adaptability and speed of learning systems. By incorporating meta-learning strategies, algorithms can autonomously adapt to new tasks and data distributions, thereby improving performance and efficiency across diverse domains. This review sheds light on the current state-of-the-art in meta-learning research and highlights its potential implications for the future of artificial intelligence.