Ruoxing Wang, Shoukun Wang, Junfeng Xue, Zhihua Chen, Jinge Si
{"title":"Obstacle detection and obstacle-surmounting planning for a wheel-legged robot based on Lidar","authors":"Ruoxing Wang, Shoukun Wang, Junfeng Xue, Zhihua Chen, Jinge Si","doi":"10.1108/ria-12-2022-0275","DOIUrl":null,"url":null,"abstract":"\nPurpose\nThis paper aims to investigate an autonomous obstacle-surmounting method based on a hybrid gait for the problem of crossing low-height obstacles autonomously by a six wheel-legged robot. The autonomy of obstacle-surmounting is reflected in obstacle recognition based on multi-frame point cloud fusion.\n\n\nDesign/methodology/approach\nIn this paper, first, for the problem that the lidar on the robot cannot scan the point cloud of low-height obstacles, the lidar is driven to rotate by a 2D turntable to obtain the point cloud of low-height obstacles under the robot. Tightly-coupled Lidar Inertial Odometry via Smoothing and Mapping algorithm, fast ground segmentation algorithm and Euclidean clustering algorithm are used to recognize the point cloud of low-height obstacles and obtain low-height obstacle in-formation. Then, combined with the structural characteristics of the robot, the obstacle-surmounting action planning is carried out for two types of obstacle scenes. A segmented approach is used for action planning. Gait units are designed to describe each segment of the action. A gait matrix is used to describe the overall action. The paper also analyzes the stability and surmounting capability of the robot’s key pose and determines the robot’s surmounting capability and the value scheme of the surmounting control variables.\n\n\nFindings\nThe experimental verification is carried out on the robot laboratory platform (BIT-6NAZA). The obstacle recognition method can accurately detect low-height obstacles. The robot can maintain a smooth posture to cross low-height obstacles, which verifies the feasibility of the adaptive obstacle-surmounting method.\n\n\nOriginality/value\nThe study can provide the theory and engineering foundation for the environmental perception of the unmanned platform. It provides environmental information to support follow-up work, for example, on the planning of obstacles and obstacles.\n","PeriodicalId":501194,"journal":{"name":"Robotic Intelligence and Automation","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Robotic Intelligence and Automation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1108/ria-12-2022-0275","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Purpose
This paper aims to investigate an autonomous obstacle-surmounting method based on a hybrid gait for the problem of crossing low-height obstacles autonomously by a six wheel-legged robot. The autonomy of obstacle-surmounting is reflected in obstacle recognition based on multi-frame point cloud fusion.
Design/methodology/approach
In this paper, first, for the problem that the lidar on the robot cannot scan the point cloud of low-height obstacles, the lidar is driven to rotate by a 2D turntable to obtain the point cloud of low-height obstacles under the robot. Tightly-coupled Lidar Inertial Odometry via Smoothing and Mapping algorithm, fast ground segmentation algorithm and Euclidean clustering algorithm are used to recognize the point cloud of low-height obstacles and obtain low-height obstacle in-formation. Then, combined with the structural characteristics of the robot, the obstacle-surmounting action planning is carried out for two types of obstacle scenes. A segmented approach is used for action planning. Gait units are designed to describe each segment of the action. A gait matrix is used to describe the overall action. The paper also analyzes the stability and surmounting capability of the robot’s key pose and determines the robot’s surmounting capability and the value scheme of the surmounting control variables.
Findings
The experimental verification is carried out on the robot laboratory platform (BIT-6NAZA). The obstacle recognition method can accurately detect low-height obstacles. The robot can maintain a smooth posture to cross low-height obstacles, which verifies the feasibility of the adaptive obstacle-surmounting method.
Originality/value
The study can provide the theory and engineering foundation for the environmental perception of the unmanned platform. It provides environmental information to support follow-up work, for example, on the planning of obstacles and obstacles.