Min Zhao, Wei He, Xiuyu He, Liang Zhang, Hongxue Zhao
{"title":"Design and performance analysis of different cambered wings for flapping-wing aerial vehicles based on wind tunnel test","authors":"Min Zhao, Wei He, Xiuyu He, Liang Zhang, Hongxue Zhao","doi":"10.1108/ria-01-2024-0006","DOIUrl":null,"url":null,"abstract":"\nPurpose\nBionic flapping-wing aerial vehicles (FWAVs) mimic natural flyers to generate the lift and thrust, such as birds, bats and insects. As an important component of the FWAVs, the flapping wings are crucial for the flight performance. The aim of this paper is to study the effects of different wings on aerodynamic performance.\n\n\nDesign/methodology/approach\nInspired by the wings structure of birds, the authors design four cambered wings to analyze the effect of airfoils on the FWAVs aerodynamic performance. The authors design the motor-driven mechanism of flapping wings, and realize the control of flapping frequency. Combined with the wind tunnel equipment, the authors build the FWAVs force test platform to test the static and dynamic aerodynamic performance of different flapping wings under the state variables of flapping frequency, wind speed and inclined angle.\n\n\nFindings\nThe results show that the aerodynamic performance of flapping wing with a camber of 20 mm is the best. Compared with flat wing, the average lift can be improved by 59.5%.\n\n\nOriginality/value\nDifferent from the traditional flat wing design of FWAVs, different cambered flapping wings are given in this paper. The influence of airfoils on aerodynamic performance of FWAVs is analyzed and the optimal flapping wing is obtained.\n","PeriodicalId":501194,"journal":{"name":"Robotic Intelligence and Automation","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Robotic Intelligence and Automation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1108/ria-01-2024-0006","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Purpose
Bionic flapping-wing aerial vehicles (FWAVs) mimic natural flyers to generate the lift and thrust, such as birds, bats and insects. As an important component of the FWAVs, the flapping wings are crucial for the flight performance. The aim of this paper is to study the effects of different wings on aerodynamic performance.
Design/methodology/approach
Inspired by the wings structure of birds, the authors design four cambered wings to analyze the effect of airfoils on the FWAVs aerodynamic performance. The authors design the motor-driven mechanism of flapping wings, and realize the control of flapping frequency. Combined with the wind tunnel equipment, the authors build the FWAVs force test platform to test the static and dynamic aerodynamic performance of different flapping wings under the state variables of flapping frequency, wind speed and inclined angle.
Findings
The results show that the aerodynamic performance of flapping wing with a camber of 20 mm is the best. Compared with flat wing, the average lift can be improved by 59.5%.
Originality/value
Different from the traditional flat wing design of FWAVs, different cambered flapping wings are given in this paper. The influence of airfoils on aerodynamic performance of FWAVs is analyzed and the optimal flapping wing is obtained.