Iterative ensemble smoothers for data assimilation in coupled nonlinear multiscale models

IF 2.8 3区 地球科学 Q3 METEOROLOGY & ATMOSPHERIC SCIENCES Monthly Weather Review Pub Date : 2024-03-05 DOI:10.1175/mwr-d-23-0239.1
G. Evensen, F. Vossepoel, Peter Jan van Leeuwen
{"title":"Iterative ensemble smoothers for data assimilation in coupled nonlinear multiscale models","authors":"G. Evensen, F. Vossepoel, Peter Jan van Leeuwen","doi":"10.1175/mwr-d-23-0239.1","DOIUrl":null,"url":null,"abstract":"\nThis paper identifies and explains particular differences and properties of adjoint-free iterative ensemble methods initially developed for parameter estimation in petroleum models. The aim is to demonstrate the methods’ potential for sequential data assimilation in coupled and multiscale unstable dynamical systems. For this study, we have introduced a new nonlinear and coupled multiscale model based on two Kuramoto-Sivashinsky equations operating on different scales where a coupling term relaxes the two model variables towards each other. This model provides a convenient testbed for studying data assimilation in highly nonlinear and coupled multiscale systems. We show that the model coupling leads to cross-covariance between the two models’ variables, allowing for a combined update of both models. The measurements of one model’s variable will also influence the other and contribute to a more consistent estimate. Secondly, the new model allows us to examine the properties of iterative ensemble smoothers and assimilation updates over finite-length assimilation windows. We discuss the impact of varying the assimilation windows’ length relative to the model’s predictability time scale. Furthermore, we show that iterative ensemble smoothers significantly improve the solution’s accuracy compared to the standard ensemble-Kalman-filter update. Results and discussions provide an enhanced understanding of the ensemble methods’ potential implementation and use in operational weather and climate-prediction systems.","PeriodicalId":18824,"journal":{"name":"Monthly Weather Review","volume":null,"pages":null},"PeriodicalIF":2.8000,"publicationDate":"2024-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Monthly Weather Review","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1175/mwr-d-23-0239.1","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

This paper identifies and explains particular differences and properties of adjoint-free iterative ensemble methods initially developed for parameter estimation in petroleum models. The aim is to demonstrate the methods’ potential for sequential data assimilation in coupled and multiscale unstable dynamical systems. For this study, we have introduced a new nonlinear and coupled multiscale model based on two Kuramoto-Sivashinsky equations operating on different scales where a coupling term relaxes the two model variables towards each other. This model provides a convenient testbed for studying data assimilation in highly nonlinear and coupled multiscale systems. We show that the model coupling leads to cross-covariance between the two models’ variables, allowing for a combined update of both models. The measurements of one model’s variable will also influence the other and contribute to a more consistent estimate. Secondly, the new model allows us to examine the properties of iterative ensemble smoothers and assimilation updates over finite-length assimilation windows. We discuss the impact of varying the assimilation windows’ length relative to the model’s predictability time scale. Furthermore, we show that iterative ensemble smoothers significantly improve the solution’s accuracy compared to the standard ensemble-Kalman-filter update. Results and discussions provide an enhanced understanding of the ensemble methods’ potential implementation and use in operational weather and climate-prediction systems.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
耦合非线性多尺度模型数据同化的迭代集合平滑器
本文确定并解释了最初为石油模型参数估计而开发的无邻接迭代集合方法的特殊差异和特性。目的是展示这些方法在耦合和多尺度不稳定动力系统中进行序列数据同化的潜力。在这项研究中,我们引入了一个新的非线性耦合多尺度模型,该模型基于两个在不同尺度上运行的 Kuramoto-Sivashinsky 方程,其中一个耦合项使两个模型变量相互松弛。该模型为研究高度非线性和耦合多尺度系统的数据同化提供了方便的试验平台。我们的研究表明,模型耦合会导致两个模型变量之间的交叉协方差,从而允许对两个模型进行联合更新。一个模型变量的测量结果也会影响另一个模型变量,并有助于获得更一致的估计结果。其次,新模式允许我们检验有限长度同化窗口内的迭代集合平滑器和同化更新的特性。我们讨论了改变同化窗长度对模式可预报性时间尺度的影响。此外,我们还表明,与标准的集合-卡尔曼滤波更新相比,迭代集合平滑器能显著提高解的精度。研究结果和讨论加深了人们对集合方法在天气和气候预测业务系统中的潜在实施和应用的理解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Monthly Weather Review
Monthly Weather Review 地学-气象与大气科学
CiteScore
6.40
自引率
12.50%
发文量
186
审稿时长
3-6 weeks
期刊介绍: Monthly Weather Review (MWR) (ISSN: 0027-0644; eISSN: 1520-0493) publishes research relevant to the analysis and prediction of observed atmospheric circulations and physics, including technique development, data assimilation, model validation, and relevant case studies. This research includes numerical and data assimilation techniques that apply to the atmosphere and/or ocean environments. MWR also addresses phenomena having seasonal and subseasonal time scales.
期刊最新文献
Radar-derived Convective Features and Atmospheric Environments of Hail-Producing Storms over the Contiguous United States Clustering Anomalous Circulations and Their Implications on the Prediction of Minimum 2m Air Temperature over Northeastern China during Winter An implementation of the particle flow filter in an atmospheric model A priori test of scale-similarity parameterizations for subgrid-scale fluxes in convective storms Examining Outer Band Supercell Environments in Landfalling Tropical Cyclones using Ground-Based Radar Analyses
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1