{"title":"Iterative ensemble smoothers for data assimilation in coupled nonlinear multiscale models","authors":"G. Evensen, F. Vossepoel, Peter Jan van Leeuwen","doi":"10.1175/mwr-d-23-0239.1","DOIUrl":null,"url":null,"abstract":"\nThis paper identifies and explains particular differences and properties of adjoint-free iterative ensemble methods initially developed for parameter estimation in petroleum models. The aim is to demonstrate the methods’ potential for sequential data assimilation in coupled and multiscale unstable dynamical systems. For this study, we have introduced a new nonlinear and coupled multiscale model based on two Kuramoto-Sivashinsky equations operating on different scales where a coupling term relaxes the two model variables towards each other. This model provides a convenient testbed for studying data assimilation in highly nonlinear and coupled multiscale systems. We show that the model coupling leads to cross-covariance between the two models’ variables, allowing for a combined update of both models. The measurements of one model’s variable will also influence the other and contribute to a more consistent estimate. Secondly, the new model allows us to examine the properties of iterative ensemble smoothers and assimilation updates over finite-length assimilation windows. We discuss the impact of varying the assimilation windows’ length relative to the model’s predictability time scale. Furthermore, we show that iterative ensemble smoothers significantly improve the solution’s accuracy compared to the standard ensemble-Kalman-filter update. Results and discussions provide an enhanced understanding of the ensemble methods’ potential implementation and use in operational weather and climate-prediction systems.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":"9 3","pages":""},"PeriodicalIF":4.7000,"publicationDate":"2024-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1175/mwr-d-23-0239.1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
Abstract
This paper identifies and explains particular differences and properties of adjoint-free iterative ensemble methods initially developed for parameter estimation in petroleum models. The aim is to demonstrate the methods’ potential for sequential data assimilation in coupled and multiscale unstable dynamical systems. For this study, we have introduced a new nonlinear and coupled multiscale model based on two Kuramoto-Sivashinsky equations operating on different scales where a coupling term relaxes the two model variables towards each other. This model provides a convenient testbed for studying data assimilation in highly nonlinear and coupled multiscale systems. We show that the model coupling leads to cross-covariance between the two models’ variables, allowing for a combined update of both models. The measurements of one model’s variable will also influence the other and contribute to a more consistent estimate. Secondly, the new model allows us to examine the properties of iterative ensemble smoothers and assimilation updates over finite-length assimilation windows. We discuss the impact of varying the assimilation windows’ length relative to the model’s predictability time scale. Furthermore, we show that iterative ensemble smoothers significantly improve the solution’s accuracy compared to the standard ensemble-Kalman-filter update. Results and discussions provide an enhanced understanding of the ensemble methods’ potential implementation and use in operational weather and climate-prediction systems.
期刊介绍:
ACS Applied Bio Materials is an interdisciplinary journal publishing original research covering all aspects of biomaterials and biointerfaces including and beyond the traditional biosensing, biomedical and therapeutic applications.
The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrates knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important bio applications. The journal is specifically interested in work that addresses the relationship between structure and function and assesses the stability and degradation of materials under relevant environmental and biological conditions.