Fabrication and Characterization of Electrically Conductive 3D Printable TPU/MWCNT Filaments for Strain Sensing in Large Deformation Conditions

Behrad Koohbor, Wei Xue, Kazi Z. Uddin, George Youssef, Daniel Nerbetski, Bradley Steiger, Joseph Kenney, Dana Yarem
{"title":"Fabrication and Characterization of Electrically Conductive 3D Printable TPU/MWCNT Filaments for Strain Sensing in Large Deformation Conditions","authors":"Behrad Koohbor,&nbsp;Wei Xue,&nbsp;Kazi Z. Uddin,&nbsp;George Youssef,&nbsp;Daniel Nerbetski,&nbsp;Bradley Steiger,&nbsp;Joseph Kenney,&nbsp;Dana Yarem","doi":"10.1002/adsr.202300198","DOIUrl":null,"url":null,"abstract":"<p>This study investigates the development of thermoplastic polyurethane (TPU) filaments incorporating multi-walled carbon nanotubes (MWCNT) to enhance strain-sensing capabilities. Various MWCNT reinforcement ratios are used to produce customized feedstock for fused filament fabrication (FFF) 3D printing. Mechanical properties and the piezoresistive response of samples printed with these multifunctional filaments are concurrently evaluated. Surface morphology and microstructural observations reveal that higher MWCNT weight percentages increase filament surface roughness and rigidity. The microstructural modifications directly influence the tensile strength and strain energy of the printed samples. The study identifies an apparent percolation threshold within the 10–12 wt.% MWCNT range, indicating the formation of a conductive network. At this threshold, higher gauge factors are achieved at lower strains. A newly introduced Electro-Mechanical Sensitivity Ratio (ESR) parameter enables the classification of composite behaviors into two distinct zones, offering the ability to tailor self-sensing structures with on-demand properties. Finally, flexible structures with proven application in soft robotics and shape morphing are fabricated and tested at different loading conditions to demonstrate the potential applicability of the custom filaments produced. The results highlight a pronounced piezoresistive response and superior load-bearing performance in the examined structures.</p>","PeriodicalId":100037,"journal":{"name":"Advanced Sensor Research","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/adsr.202300198","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Sensor Research","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/adsr.202300198","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This study investigates the development of thermoplastic polyurethane (TPU) filaments incorporating multi-walled carbon nanotubes (MWCNT) to enhance strain-sensing capabilities. Various MWCNT reinforcement ratios are used to produce customized feedstock for fused filament fabrication (FFF) 3D printing. Mechanical properties and the piezoresistive response of samples printed with these multifunctional filaments are concurrently evaluated. Surface morphology and microstructural observations reveal that higher MWCNT weight percentages increase filament surface roughness and rigidity. The microstructural modifications directly influence the tensile strength and strain energy of the printed samples. The study identifies an apparent percolation threshold within the 10–12 wt.% MWCNT range, indicating the formation of a conductive network. At this threshold, higher gauge factors are achieved at lower strains. A newly introduced Electro-Mechanical Sensitivity Ratio (ESR) parameter enables the classification of composite behaviors into two distinct zones, offering the ability to tailor self-sensing structures with on-demand properties. Finally, flexible structures with proven application in soft robotics and shape morphing are fabricated and tested at different loading conditions to demonstrate the potential applicability of the custom filaments produced. The results highlight a pronounced piezoresistive response and superior load-bearing performance in the examined structures.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于大变形条件下应变传感的导电三维打印热塑性聚氨酯/MWCNT 纤维的制作与表征
本研究调查了含有多壁碳纳米管 (MWCNT) 的热塑性聚氨酯 (TPU) 长丝的开发情况,以增强应变传感能力。采用不同的 MWCNT 增强比例生产定制原料,用于熔融长丝制造(FFF)3D 打印。同时还对使用这些多功能丝打印的样品的机械性能和压阻响应进行了评估。表面形态和微结构观察结果表明,较高的 MWCNT 重量百分比会增加长丝的表面粗糙度和刚性。微结构的改变直接影响了打印样品的拉伸强度和应变能。研究发现,在 10-12 重量百分比的 MWCNT 范围内存在明显的渗流阈值,表明导电网络已经形成。在此阈值下,较低的应变即可实现较高的测量系数。新引入的机电灵敏度比 (ESR) 参数可将复合材料的行为划分为两个不同的区域,从而能够定制具有按需特性的自感应结构。最后,在不同的加载条件下,制作并测试了在软机器人和形状变形中应用成熟的柔性结构,以证明所生产的定制长丝的潜在适用性。结果表明,受测结构具有明显的压阻响应和卓越的承重性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Smart Hydrogel Sensors for Health Monitoring and Early Warning (Adv. Sensor Res. 9/2024) Masthead (Adv. Sensor Res. 9/2024) Integrated Microwave Photonic Sensors Based on Microresonators (Adv. Sensor Res. 8/2024) Development of Kirigami-Patterned Stretchable Tactile Sensor Array with Soft Hinges for Highly Sensitive Force Detection (Adv. Sensor Res. 8/2024) Masthead (Adv. Sensor Res. 8/2024)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1