{"title":"Bead-based microfluidic platforms for multiplex and ultrasensitive immunoassays in clinical diagnosis and treatment","authors":"Xiaoxia Fang, Yiwen Yang, Heni Wang, Hong Xu","doi":"10.1016/j.mbm.2024.100063","DOIUrl":null,"url":null,"abstract":"<div><p>Multiplex ultrasensitive detection of low abundance proteins remains a significant challenge in clinical applications, necessitating the development of innovative solutions. The integration of bead-based microfluidic chip platforms with their efficient target capture and separation capabilities, along with the advantages of miniaturization and low reagent consumption, holds great promise for building an integrated point-of-care testing (POCT) system that enables seamless sample input-result output. This review presents a comprehensive overview of recent advancements in bead-based microfluidic platforms for multiplex and ultrasensitive immunoassays, along with their potential applications in clinical diagnosis and treatment, which is organized into four sections: encoding techniques, the role of microfluidic platforms, applications, and future prospects.</p></div>","PeriodicalId":100900,"journal":{"name":"Mechanobiology in Medicine","volume":"2 2","pages":"Article 100063"},"PeriodicalIF":0.0000,"publicationDate":"2024-03-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2949907024000263/pdfft?md5=6e5a8a8197a33fba655951a040622044&pid=1-s2.0-S2949907024000263-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mechanobiology in Medicine","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2949907024000263","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Multiplex ultrasensitive detection of low abundance proteins remains a significant challenge in clinical applications, necessitating the development of innovative solutions. The integration of bead-based microfluidic chip platforms with their efficient target capture and separation capabilities, along with the advantages of miniaturization and low reagent consumption, holds great promise for building an integrated point-of-care testing (POCT) system that enables seamless sample input-result output. This review presents a comprehensive overview of recent advancements in bead-based microfluidic platforms for multiplex and ultrasensitive immunoassays, along with their potential applications in clinical diagnosis and treatment, which is organized into four sections: encoding techniques, the role of microfluidic platforms, applications, and future prospects.