The ovarian tumor microenvironment plays a critical yet is poorly understood role in the regulation of cancer cell behaviors including proliferation, migration, and response to chemotherapy treatments. Ovarian cancer is the deadliest gynecological cancer, due to diagnosis at late stages of the disease and increased resistance to chemotherapies for recurrent disease. Understanding how the tumor microenvironment (TME) interacts with biomechanical forces to drive changes to ovarian cancer cell behaviors could elucidate novel treatment strategies for this patient population. Additionally, limitations in current preclinical models of the ovarian TME do not permit investigation of crosstalk between signaling pathways and mechanical forces. Our study focused on uncovering how strains and hyaluronic acid (HA) interact to signal through the CD44 receptor to alter ovarian cancer cell growth, migration, and response to a commonly used chemotherapy, paclitaxel. Using an advanced 3D in vitro model, we were able to identify how interactions of strain and HA as in the TME synergistically drive enhanced proliferation and migration in an ovarian tumor model line, while decreasing response to paclitaxel treatment. This study demonstrates the importance of elucidating how the mechanical forces present in the ovarian TME drive disease progression and response to treatment.
Bone tissue engineering requires a combination of materials, cells, growth factors and mechanical cues to recapitulate bone formation. In this study we evaluated hybrid hydrogels for minimally invasive bone formation by combining biomaterials with skeletal stem cells and staged release of growth factors together with mechanotransduction. Hybrid hydrogels consisting of alginate and decellularized, demineralised bone extracellular matrix (ALG/ECM) were seeded with Stro-1+ human bone marrow stromal cells (HBMSCs). Dual combinations of growth factors within staged-release polylactic-co-glycolic acid (PLGA) microparticles were added to hydrogels to mimic, in part, the signalling events in bone regeneration: VEGF, TGF-β3, PTHrP (fast release), or BMP-2, vitamin D3 (slow release). Mechanotransduction was initiated using magnetic fields to remotely actuate superparamagnetic nanoparticles (MNP) targeted to TREK1 ion channels. Hybrid hydrogels were implanted subcutaneously within mice for 28 days, and evaluated for bone formation using micro-CT and histology. Control hydrogels lacking HBMSCs, growth factors, or MNP became mineralised, and neither growth factors, HBMSCs, nor mechanotransduction increased bone formation. However, structural differences in the newly-formed bone were influenced by growth factors. Slow release of BMP-2 induced thick bone trabeculae and PTHrP or VitD3 increased bone formation. However, fast-release of TGF-β3 and VEGF resulted in thin trabeculae. Mechanotransduction reversed the trabecular thinning and increased collagen deposition with PTHrP and VitD3. Our findings demonstrate the potential of hybrid ALG/ECM hydrogel–cell–growth factor constructs to repair bone in combination with mechanotransduction for fine-tuning bone structure. This approach may form a minimally invasive reparative strategy for bone tissue engineering applications.
Prostate cancer (PCa) continues to rank among the most common malignancies in Europe and North America with significant mortality rates despite advancements in detection and treatment. Physical activity is often recommended to PCa patients due to its benefits in preventing disease recurrence and managing treatment-related side effects. However, physical activity may be challenging for elderly or bedridden patients. As such, vibration therapy has been proposed as a safe, effective, and easy to perform alternative treatment that may confer similar effects as physical exercise. Specifically, low-magnitude high frequency (LMHF) vibration has been shown to decrease breast cancer extravasation into the bone and reduce other types of cancer proliferation by impacting cell viability. Here, we investigated the effects of daily application of LMHF vibration (0.3 g, 60 Hz, 1 hour/day for 3 days) on prostate cancer growth and bone metastasis in vitro. Our findings suggest that LMHF vibration significantly reduces colony formation through a decrease in cell growth and proliferation. Moreover, using a 3D cell culture model, LMHF vibration significantly reduces PC3 spheroid size. Additionally, LMHF vibration reduces PCa cell extravasation into the bone microenvironment through the stimulation of osteocytes and subsequent osteocyte-endothelial cell cross talk. These findings highlight the potential of LMHF vibration for managing PCa growth and metastasis.
The field of cancer research is increasingly recognizing the complex interplay between biomechanics and tumor epigenetics. Biomechanics plays a significant role in the occurrence, development, and metastasis of cancer and may exert influence by impacting the epigenetic modifications of tumors. In this review, we investigate a spectrum of biomechanical tools, including computational models, measurement instruments, and in vitro simulations. These tools not only assist in deciphering the mechanisms behind these epigenetic changes but also provide novel methods for characterizing tumors, which are significant for diagnosis and treatment. Finally, we discuss the potential of new therapies that target the biomechanical properties of the tumor microenvironment. There is hope that by altering factors such as the stiffness of the extracellular matrix or interfering with mechano-sensing pathways, we can halt tumor progression through epigenetic mechanisms. We emphasize the necessity for multidisciplinary efforts to integrate biomechanics with tumor epigenetics more comprehensively. Such collaboration is anticipated to advance therapeutic strategies and enhance our understanding of cancer biology, signaling the dawn of a new era in cancer treatment and research.
Cardiovascular diseases (CVDs) persistently rank as a leading cause of premature death and illness worldwide. The Hippo signaling pathway, known for its highly conserved nature and integral role in regulating organ size, tissue homeostasis, and stem cell function, has been identified as a critical factor in the pathogenesis of CVDs. Recent findings underscore the significance of the Yes-associated protein (YAP) and the Transcriptional Coactivator with PDZ-binding motif (TAZ), collectively referred to as YAP/TAZ. These proteins play pivotal roles as downstream components of the Hippo pathway, in the regulation of cardiovascular development and homeostasis. YAP/TAZ can regulate various cellular processes such as cell proliferation, migration, differentiation, and apoptosis through their interactions with transcription factors, particularly those within the transcriptional enhancer associate domain (TEAD) family. The aim of this review is to provide a comprehensive overview of the current understanding of YAP/TAZ signaling in cardiovascular physiology and pathogenesis. We analyze the regulatory mechanisms of YAP/TAZ activation, explore their downstream effectors, and examine their association across numerous cardiovascular disorders, including myocardial hypertrophy, myocardial infarction, pulmonary hypertension, myocardial ischemia-reperfusion injury, atherosclerosis, angiogenesis, restenosis, and cardiac fibrosis. Furthermore, we investigate the potential therapeutic implications of targeting the YAP/TAZ pathway for the treatment of CVDs. Through this comprehensive review, our aim is to elucidate the current understanding of YAP/TAZ signaling in cardiovascular biology and underscore its potential implications for the diagnosis and therapeutic intervention of CVDs.