R. Jagadeeswari, G. Rathika, K. V. Satheesh Kumar, P. Selvakumar
{"title":"Surface parametric influences on the photocatalytic behaviour of zinc oxide nanoparticles","authors":"R. Jagadeeswari, G. Rathika, K. V. Satheesh Kumar, P. Selvakumar","doi":"10.15251/jor.2024.201.115","DOIUrl":null,"url":null,"abstract":"Zinc oxide nanoparticles were chemically synthesised and characterised by UV-DRS spectroscopy, FTIR, scanning electron microscopy with energy-dispersive X-ray diffraction, and X-ray powder diffraction. In order to evaluate the impact of the synthesis process on the structural parameters, Rietveld refinement was done using the GSAS-II programme on experimentally acquired XRD data. ZnO was found to have a hexagonal structure with lattice parameters of a = b =3.247 Å; c = 5.205Å and an average size of about 20-40 nm, as determined by Rietveld refinement of XRD and SEM data. FTIR and EDX analysis was used to confirm the functional group and elemental composition of ZnO NPs. The UV-DRS spectra revealed that the synthesised ZnO had an optical band gap of 3.05 eV. Parametric investigations of the surface morphology of ZnO nanostructures were conducted using the Gwyddion programme. Pseudo-first-order rate kinetics were observed for the photodegradation of two cationic dyes, MB (87.87%) and RhB (74.79%), in the presence of UV light.","PeriodicalId":54394,"journal":{"name":"Journal of Ovonic Research","volume":"15 9","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Ovonic Research","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.15251/jor.2024.201.115","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Zinc oxide nanoparticles were chemically synthesised and characterised by UV-DRS spectroscopy, FTIR, scanning electron microscopy with energy-dispersive X-ray diffraction, and X-ray powder diffraction. In order to evaluate the impact of the synthesis process on the structural parameters, Rietveld refinement was done using the GSAS-II programme on experimentally acquired XRD data. ZnO was found to have a hexagonal structure with lattice parameters of a = b =3.247 Å; c = 5.205Å and an average size of about 20-40 nm, as determined by Rietveld refinement of XRD and SEM data. FTIR and EDX analysis was used to confirm the functional group and elemental composition of ZnO NPs. The UV-DRS spectra revealed that the synthesised ZnO had an optical band gap of 3.05 eV. Parametric investigations of the surface morphology of ZnO nanostructures were conducted using the Gwyddion programme. Pseudo-first-order rate kinetics were observed for the photodegradation of two cationic dyes, MB (87.87%) and RhB (74.79%), in the presence of UV light.
期刊介绍:
Journal of Ovonic Research (JOR) appears with six issues per year and is open to the reviews, papers, short communications and breakings news inserted as Short Notes, in the field of ovonic (mainly chalcogenide) materials for memories, smart materials based on ovonic materials (combinations of various elements including chalcogenides), materials with nano-structures based on various alloys, as well as semiconducting materials and alloys based on amorphous silicon, germanium, carbon in their various nanostructured forms, either simple or doped/alloyed with hydrogen, fluorine, chlorine and other elements of high interest for applications in electronics and optoelectronics. Papers on minerals with possible applications in electronics and optoelectronics are encouraged.