Application of Survival Quilts for prognosis prediction of gastrectomy patients based on the Surveillance, Epidemiology, and End Results database and China National Cancer Center Gastric Cancer database

Lulu Zhao , Penghui Niu , Wanqing Wang , Xue Han , Xiaoyi Luan , Huang Huang , Yawei Zhang , Dongbing Zhao , Jidong Gao , Yingtai Chen
{"title":"Application of Survival Quilts for prognosis prediction of gastrectomy patients based on the Surveillance, Epidemiology, and End Results database and China National Cancer Center Gastric Cancer database","authors":"Lulu Zhao ,&nbsp;Penghui Niu ,&nbsp;Wanqing Wang ,&nbsp;Xue Han ,&nbsp;Xiaoyi Luan ,&nbsp;Huang Huang ,&nbsp;Yawei Zhang ,&nbsp;Dongbing Zhao ,&nbsp;Jidong Gao ,&nbsp;Yingtai Chen","doi":"10.1016/j.jncc.2024.01.007","DOIUrl":null,"url":null,"abstract":"<div><h3>Objective</h3><p>Accurate prognosis prediction is critical for individualized-therapy making of gastric cancer patients. We aimed to develop and test 6-month, 1-, 2-, 3-, 5-, and 10-year overall survival (OS) and cancer-specific survival (CSS) prediction models for gastric cancer patients following gastrectomy.</p></div><div><h3>Methods</h3><p>We derived and tested Survival Quilts, a machine learning-based model, to develop 6-month, 1-, 2-, 3-, 5-, and 10-year OS and CSS prediction models. Gastrectomy patients in the development set (<em>n</em> = 20,583) and the internal validation set (<em>n</em> = 5,106) were recruited from the Surveillance, Epidemiology, and End Results (SEER) database, while those in the external validation set (<em>n</em> = 6,352) were recruited from the China National Cancer Center Gastric Cancer (NCCGC) database. Furthermore, we selected gastrectomy patients without neoadjuvant therapy as a subgroup to train and test the prognostic models in order to keep the accuracy of tumor-node-metastasis (TNM) stage. Prognostic performances of these OS and CSS models were assessed using the Concordance Index (C-index) and area under the curve (AUC) values.</p></div><div><h3>Results</h3><p>The machine learning model had a consistently high accuracy in predicting 6-month, 1-, 2-, 3-, 5-, and 10-year OS in the SEER development set (C-index = 0.861, 0.832, 0.789, 0.766, 0.740, and 0.709; AUC = 0.784, 0.828, 0.840, 0.849, 0.869, and 0.902, respectively), SEER validation set (C-index = 0.782, 0.739, 0.712, 0.698, 0.681, and 0.660; AUC = 0.751, 0.772, 0.767, 0.762, 0.766, and 0.787, respectively), and NCCGC set (C-index = 0.691, 0.756, 0.751, 0.737, 0.722, and 0.701; AUC = 0.769, 0.788, 0.790, 0.790, 0.787, and 0.788, respectively). The model was able to predict 6-month, 1-, 2-, 3-, 5-, and 10-year CSS in the SEER development set (C-index = 0.879, 0.858, 0.820, 0.802, 0.784, and 0.774; AUC = 0.756, 0.827, 0.852, 0.863, 0.874, and 0.884, respectively) and SEER validation set (C-index = 0.790, 0.763, 0.741, 0.729, 0.718, and 0.708; AUC = 0.706, 0.758, 0.767, 0.766, 0.766, and 0.764, respectively). In multivariate analysis, the high-risk group with risk score output by 5-year OS model was proved to be a strong survival predictor both in the SEER development set (hazard ratio [HR] = 14.59, 95% confidence interval [CI]: 1.872–2.774, <em>P</em> &lt; 0.001), SEER validation set (HR = 2.28, 95% CI: 13.089–16.293, <em>P</em> &lt; 0.001), and NCCGC set (HR = 1.98, 95% CI: 1.617–2.437, <em>P</em> <em>&lt;</em> 0.001). We further explored the prognostic value of risk score resulted 5-year CSS model of gastrectomy patients, and found that high-risk group remained as an independent CSS factor in the SEER development set (HR = 12.81, 95% CI: 11.568–14.194, <em>P</em> &lt; 0.001) and SEER validation set (HR = 1.61, 95% CI: 1.338–1.935, <em>P</em> &lt; 0.001).</p></div><div><h3>Conclusion</h3><p>Survival Quilts could allow accurate prediction of 6-month, 1-, 2-, 3-, 5-, and 10-year OS and CSS in gastric cancer patients following gastrectomy.</p></div>","PeriodicalId":73987,"journal":{"name":"Journal of the National Cancer Center","volume":"4 2","pages":"Pages 142-152"},"PeriodicalIF":7.6000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S266700542400019X/pdfft?md5=03ed90ba842276e402ae3a9c6f81bd5f&pid=1-s2.0-S266700542400019X-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the National Cancer Center","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S266700542400019X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Objective

Accurate prognosis prediction is critical for individualized-therapy making of gastric cancer patients. We aimed to develop and test 6-month, 1-, 2-, 3-, 5-, and 10-year overall survival (OS) and cancer-specific survival (CSS) prediction models for gastric cancer patients following gastrectomy.

Methods

We derived and tested Survival Quilts, a machine learning-based model, to develop 6-month, 1-, 2-, 3-, 5-, and 10-year OS and CSS prediction models. Gastrectomy patients in the development set (n = 20,583) and the internal validation set (n = 5,106) were recruited from the Surveillance, Epidemiology, and End Results (SEER) database, while those in the external validation set (n = 6,352) were recruited from the China National Cancer Center Gastric Cancer (NCCGC) database. Furthermore, we selected gastrectomy patients without neoadjuvant therapy as a subgroup to train and test the prognostic models in order to keep the accuracy of tumor-node-metastasis (TNM) stage. Prognostic performances of these OS and CSS models were assessed using the Concordance Index (C-index) and area under the curve (AUC) values.

Results

The machine learning model had a consistently high accuracy in predicting 6-month, 1-, 2-, 3-, 5-, and 10-year OS in the SEER development set (C-index = 0.861, 0.832, 0.789, 0.766, 0.740, and 0.709; AUC = 0.784, 0.828, 0.840, 0.849, 0.869, and 0.902, respectively), SEER validation set (C-index = 0.782, 0.739, 0.712, 0.698, 0.681, and 0.660; AUC = 0.751, 0.772, 0.767, 0.762, 0.766, and 0.787, respectively), and NCCGC set (C-index = 0.691, 0.756, 0.751, 0.737, 0.722, and 0.701; AUC = 0.769, 0.788, 0.790, 0.790, 0.787, and 0.788, respectively). The model was able to predict 6-month, 1-, 2-, 3-, 5-, and 10-year CSS in the SEER development set (C-index = 0.879, 0.858, 0.820, 0.802, 0.784, and 0.774; AUC = 0.756, 0.827, 0.852, 0.863, 0.874, and 0.884, respectively) and SEER validation set (C-index = 0.790, 0.763, 0.741, 0.729, 0.718, and 0.708; AUC = 0.706, 0.758, 0.767, 0.766, 0.766, and 0.764, respectively). In multivariate analysis, the high-risk group with risk score output by 5-year OS model was proved to be a strong survival predictor both in the SEER development set (hazard ratio [HR] = 14.59, 95% confidence interval [CI]: 1.872–2.774, P < 0.001), SEER validation set (HR = 2.28, 95% CI: 13.089–16.293, P < 0.001), and NCCGC set (HR = 1.98, 95% CI: 1.617–2.437, P < 0.001). We further explored the prognostic value of risk score resulted 5-year CSS model of gastrectomy patients, and found that high-risk group remained as an independent CSS factor in the SEER development set (HR = 12.81, 95% CI: 11.568–14.194, P < 0.001) and SEER validation set (HR = 1.61, 95% CI: 1.338–1.935, P < 0.001).

Conclusion

Survival Quilts could allow accurate prediction of 6-month, 1-, 2-, 3-, 5-, and 10-year OS and CSS in gastric cancer patients following gastrectomy.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于监测、流行病学和终末结果(SEER)数据库和中国国家癌症中心胃癌(NCCGC)数据库的生存被子在胃切除术患者预后预测中的应用
目的准确的预后预测对胃癌患者的个体化治疗至关重要。我们旨在开发并测试胃癌患者胃切除术后 6 个月、1 年、2 年、3 年、5 年和 10 年总生存期(OS)和癌症特异性生存期(CSS)预测模型。方法我们开发并测试了基于机器学习的 Survival Quilts 模型,以开发 6 个月、1 年、2 年、3 年、5 年和 10 年 OS 和 CSS 预测模型。开发集(n = 20,583)和内部验证集(n = 5,106)中的胃切除术患者来自监测、流行病学和最终结果(SEER)数据库,而外部验证集(n = 6,352)中的胃切除术患者来自中国国家癌症中心胃癌(NCCGC)数据库。此外,为了保证肿瘤-结节-转移(TNM)分期的准确性,我们选择了未接受新辅助治疗的胃切除术患者作为亚组来训练和测试预后模型。结果在SEER开发集中,机器学习模型对6个月、1年、2年、3年、5年和10年OS的预测准确率一直很高(C-index = 0.861, 0.832, 0.789, 0.766, 0.740, and 0.709; AUC = 0.784, 0.828, 0.840, 0.849, 0.869, and 0.902, respectively)、SEER 验证集(C-index = 0.782, 0.739, 0.712, 0.698, 0.681, and 0.660; AUC = 0.751, 0.772, 0.767, 0.762、0.766 和 0.787),以及 NCCGC 集(C-index = 0.691、0.756、0.751、0.737、0.722 和 0.701;AUC = 0.769、0.788、0.790、0.790、0.787 和 0.788)。在 SEER 开发集中,该模型能够预测 6 个月、1 年、2 年、3 年、5 年和 10 年 CSS(C 指数 = 0.879、0.858、0.820、0.802、0.784 和 0.774;AUC = 0.756、0.827、0.852、0.863、0.874 和 0.884)和 SEER 验证集(C-index = 0.790、0.763、0.741、0.729、0.718 和 0.708;AUC = 0.706、0.758、0.767、0.766、0.766 和 0.764)。在多变量分析中,5 年 OS 模型输出风险评分的高危组被证明是 SEER 开发集中一个强有力的生存预测因子(危险比 [HR] = 14.59,95% 置信区间 [CI]:1.872-2.774):1.872-2.774, P < 0.001)、SEER 验证集(HR = 2.28, 95% CI: 13.089-16.293, P < 0.001)和 NCCGC 集(HR = 1.98, 95% CI: 1.617-2.437, P < 0.001)。我们进一步探讨了风险评分导致胃切除术患者5年CSS模型的预后价值,发现在SEER开发集中,高风险组仍然是一个独立的CSS因素(HR = 12.81, 95% CI: 11.568-14.结论 "生存被单 "可准确预测胃癌患者胃切除术后 6 个月、1-、2-、3-、5-和 10 年的 OS 和 CSS。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
14.20
自引率
0.00%
发文量
0
审稿时长
70 days
期刊最新文献
Editorial Board Cancer survival statistics in China 2019–2021: a multicenter, population-based study Associations between blood glucose and early- and late-onset colorectal cancer: evidence from two prospective cohorts and Mendelian randomization analyses Primary liver cancer organoids and their application to research and therapy DCS, a novel classifier system based on disulfidptosis reveals tumor microenvironment heterogeneity and guides frontline therapy for clear cell renal carcinoma
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1