Reconstructing human gaze behavior from EEG using inverse reinforcement learning

Q2 Health Professions Smart Health Pub Date : 2024-03-21 DOI:10.1016/j.smhl.2024.100480
Jiaqi Gong , Shengting Cao , Soroush Korivand , Nader Jalili
{"title":"Reconstructing human gaze behavior from EEG using inverse reinforcement learning","authors":"Jiaqi Gong ,&nbsp;Shengting Cao ,&nbsp;Soroush Korivand ,&nbsp;Nader Jalili","doi":"10.1016/j.smhl.2024.100480","DOIUrl":null,"url":null,"abstract":"<div><p>Decoding eye movements from non-invasive electroencephalography (EEG) data is a challenging yet vital task for both scientific and practical purposes, especially for identifying neurodegenerative disorders like Alzheimer’s disease (AD). Our research tackles this complexity by adapting inverse reinforcement learning (IRL), a machine learning method, to infer decision-making strategies from observed behaviors. We implement this to understand the processes driving eye direction and movements during diverse cognitive tasks, providing new insights into this field. Our paper begins with a detailed description of the procedures for collecting and preprocessing EEG data related to gaze behavior. We then elaborate on the development of an IRL framework designed to predict the spatial and temporal dynamics of eye movements (scanpaths) in participants engaged in cognitive tasks of varying complexity. Our model is tailored to accommodate the complexities inherent in neural signals and the stochastic nature of human gaze patterns. Our research findings underscore IRL’s effectiveness in precisely forecasting gaze patterns based on a combination of EEG and image data. The correlation between the model’s predictions and the actual gaze behavior observed in controlled experiments reinforces the utility of IRL in cognitive neuroscience research. Notably, our IRL-EEG models demonstrated superior performance, especially in more complex cognitive tasks. We further delve into the implications of our results for enhancing the understanding of neural mechanisms that govern gaze behavior.</p></div>","PeriodicalId":37151,"journal":{"name":"Smart Health","volume":"32 ","pages":"Article 100480"},"PeriodicalIF":0.0000,"publicationDate":"2024-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Smart Health","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352648324000369","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Health Professions","Score":null,"Total":0}
引用次数: 0

Abstract

Decoding eye movements from non-invasive electroencephalography (EEG) data is a challenging yet vital task for both scientific and practical purposes, especially for identifying neurodegenerative disorders like Alzheimer’s disease (AD). Our research tackles this complexity by adapting inverse reinforcement learning (IRL), a machine learning method, to infer decision-making strategies from observed behaviors. We implement this to understand the processes driving eye direction and movements during diverse cognitive tasks, providing new insights into this field. Our paper begins with a detailed description of the procedures for collecting and preprocessing EEG data related to gaze behavior. We then elaborate on the development of an IRL framework designed to predict the spatial and temporal dynamics of eye movements (scanpaths) in participants engaged in cognitive tasks of varying complexity. Our model is tailored to accommodate the complexities inherent in neural signals and the stochastic nature of human gaze patterns. Our research findings underscore IRL’s effectiveness in precisely forecasting gaze patterns based on a combination of EEG and image data. The correlation between the model’s predictions and the actual gaze behavior observed in controlled experiments reinforces the utility of IRL in cognitive neuroscience research. Notably, our IRL-EEG models demonstrated superior performance, especially in more complex cognitive tasks. We further delve into the implications of our results for enhancing the understanding of neural mechanisms that govern gaze behavior.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用反强化学习从脑电图重构人类注视行为
从无创脑电图(EEG)数据中解码眼球运动是一项极具挑战性的任务,但对于科学和实际用途都至关重要,尤其是在识别阿尔茨海默病(AD)等神经退行性疾病方面。我们的研究通过调整反强化学习(IRL)这一机器学习方法,从观察到的行为中推断出决策策略,从而解决了这一复杂问题。我们利用这种方法来了解各种认知任务中眼球方向和运动的驱动过程,从而为这一领域提供新的见解。我们的论文首先详细描述了收集和预处理与注视行为相关的脑电图数据的程序。然后,我们详细阐述了 IRL 框架的开发过程,该框架旨在预测参与不同复杂度认知任务的参与者眼球运动(扫描路径)的空间和时间动态。我们的模型是为适应神经信号固有的复杂性和人类注视模式的随机性而量身定制的。我们的研究结果表明,IRL 能够在脑电图和图像数据的基础上精确预测注视模式。模型预测与对照实验中观察到的实际注视行为之间的相关性加强了 IRL 在认知神经科学研究中的实用性。值得注意的是,我们的 IRL-EEG 模型表现出了卓越的性能,尤其是在更复杂的认知任务中。我们将进一步深入探讨我们的研究结果对加深理解支配注视行为的神经机制的意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Smart Health
Smart Health Computer Science-Computer Science Applications
CiteScore
6.50
自引率
0.00%
发文量
81
期刊最新文献
Editorial Board Smart health practices: Strategies to improve healthcare efficiency through digital twin technology Human knowledge-based artificial intelligence methods for skin cancer management: Accuracy and interpretability study SAFE: Sound Analysis for Fall Event detection using machine learning Latent Space Representation of Adversarial AutoEncoder for Human Activity Recognition: Application to a low-cost commercial force plate and inertial measurement units
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1