Human knowledge-based artificial intelligence methods for skin cancer management: Accuracy and interpretability study

Q2 Health Professions Smart Health Pub Date : 2025-01-23 DOI:10.1016/j.smhl.2025.100540
Eman Rezk , Mohamed Eltorki , Wael El-Dakhakhni
{"title":"Human knowledge-based artificial intelligence methods for skin cancer management: Accuracy and interpretability study","authors":"Eman Rezk ,&nbsp;Mohamed Eltorki ,&nbsp;Wael El-Dakhakhni","doi":"10.1016/j.smhl.2025.100540","DOIUrl":null,"url":null,"abstract":"<div><div>Skin cancer management, including monitoring and excision, involves sophisticated decisions reliant on several interdependent factors. This complexity leads to a scarcity of data useful for skin cancer management. Deep learning achieved massive success in computer vision due to its ability to extract representative features from images. However, deep learning methods require large amounts of data to develop accurate models, whereas machine learning methods perform well with small datasets. In this work, we aim to compare the accuracy and interpretability of skin cancer management prediction 1) using deep learning and machine learning methods and 2) utilizing various inputs including clinical images, dermoscopic images, and lesion clinical tabular features created by experts to represent lesion characteristics. We implemented two approaches, a deep learning pipeline for feature extraction and classification trained on different input modalities including images and lesion clinical features. The second approach uses lesion clinical features to train machine learning classifiers. The results show that the machine learning approach trained on clinical features achieves higher accuracy (0.80) and higher area under the curve (0.92) compared to the deep learning pipeline trained on skin images and lesion clinical features which achieves an accuracy of 0.66 and area under the curve of 0.74. Additionally, the machine learning approach provides more informative and understandable interpretations of the results. This work emphasizes the significance of utilizing human knowledge in developing precise and transparent predictive models. In addition, our findings highlight the potential of machine learning methods in predicting lesion management in situation where the data size is insufficient to leverage deep learning capabilities.</div></div>","PeriodicalId":37151,"journal":{"name":"Smart Health","volume":"36 ","pages":"Article 100540"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Smart Health","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352648325000017","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Health Professions","Score":null,"Total":0}
引用次数: 0

Abstract

Skin cancer management, including monitoring and excision, involves sophisticated decisions reliant on several interdependent factors. This complexity leads to a scarcity of data useful for skin cancer management. Deep learning achieved massive success in computer vision due to its ability to extract representative features from images. However, deep learning methods require large amounts of data to develop accurate models, whereas machine learning methods perform well with small datasets. In this work, we aim to compare the accuracy and interpretability of skin cancer management prediction 1) using deep learning and machine learning methods and 2) utilizing various inputs including clinical images, dermoscopic images, and lesion clinical tabular features created by experts to represent lesion characteristics. We implemented two approaches, a deep learning pipeline for feature extraction and classification trained on different input modalities including images and lesion clinical features. The second approach uses lesion clinical features to train machine learning classifiers. The results show that the machine learning approach trained on clinical features achieves higher accuracy (0.80) and higher area under the curve (0.92) compared to the deep learning pipeline trained on skin images and lesion clinical features which achieves an accuracy of 0.66 and area under the curve of 0.74. Additionally, the machine learning approach provides more informative and understandable interpretations of the results. This work emphasizes the significance of utilizing human knowledge in developing precise and transparent predictive models. In addition, our findings highlight the potential of machine learning methods in predicting lesion management in situation where the data size is insufficient to leverage deep learning capabilities.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Smart Health
Smart Health Computer Science-Computer Science Applications
CiteScore
6.50
自引率
0.00%
发文量
81
期刊最新文献
Editorial Board Smart health practices: Strategies to improve healthcare efficiency through digital twin technology Human knowledge-based artificial intelligence methods for skin cancer management: Accuracy and interpretability study SAFE: Sound Analysis for Fall Event detection using machine learning Latent Space Representation of Adversarial AutoEncoder for Human Activity Recognition: Application to a low-cost commercial force plate and inertial measurement units
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1