{"title":"Potential reduction in carbon fixation capacity under climate change in a Pinus koraiensis forest","authors":"Dong Kook Woo","doi":"10.1016/j.fecs.2024.100183","DOIUrl":null,"url":null,"abstract":"<div><p>There has been an increasing recognition of the crucial role of forests, responsible for sequestering atmospheric CO<sub>2</sub>, as a moral imperative for mitigating the pace of climate change. The complexity of evaluating climate change impacts on forest carbon and water dynamics lies in the diverse acclimations of forests to changing environments. In this study, we assessed two of the most common acclimation traits, namely leaf area index and the maximum rate of carboxylation (<em>V</em><sub>cmax</sub>), to explore the potential acclimation pathways of <em>Pinus koraiensis</em> under climate change. We used a mechanistic and process-based ecohydrological model applied to a <em>P</em>. <em>koraiensis</em> forest in Mt. Taehwa, South Korea. We conducted numerical investigations into the impacts of (i) Shared Socioeconomic Pathways 2–4.5 (SSP2-4.5) and 5–8.5 (SSP5-8.5), (ii) elevated atmospheric CO<sub>2</sub> and temperature, and (iii) acclimations of leaf area index and <em>V</em><sub>cmax</sub> on the carbon and water dynamics of <em>P</em>. <em>koraiensis</em>. We found that there was a reduction in net primary productivity (NPP) under the SSP2-4.5 scenario, but not under SSP5-8.5, compared to the baseline, due to an imbalance between increases in atmospheric CO<sub>2</sub> and temperature. A decrease in leaf area index and an increase in <em>V</em><sub>cmax</sub> of <em>P</em>. <em>koraiensis</em> were expected if acclimations were made to reduce its leaf temperature. Under such acclimation pathways, it would be expected that the well-known CO<sub>2</sub> fertilizer effects on NPP would be attenuated.</p></div>","PeriodicalId":54270,"journal":{"name":"Forest Ecosystems","volume":null,"pages":null},"PeriodicalIF":3.8000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2197562024000198/pdfft?md5=b9da96515fdc17c409caa6494b136f5a&pid=1-s2.0-S2197562024000198-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Forest Ecosystems","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2197562024000198","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FORESTRY","Score":null,"Total":0}
引用次数: 0
Abstract
There has been an increasing recognition of the crucial role of forests, responsible for sequestering atmospheric CO2, as a moral imperative for mitigating the pace of climate change. The complexity of evaluating climate change impacts on forest carbon and water dynamics lies in the diverse acclimations of forests to changing environments. In this study, we assessed two of the most common acclimation traits, namely leaf area index and the maximum rate of carboxylation (Vcmax), to explore the potential acclimation pathways of Pinus koraiensis under climate change. We used a mechanistic and process-based ecohydrological model applied to a P. koraiensis forest in Mt. Taehwa, South Korea. We conducted numerical investigations into the impacts of (i) Shared Socioeconomic Pathways 2–4.5 (SSP2-4.5) and 5–8.5 (SSP5-8.5), (ii) elevated atmospheric CO2 and temperature, and (iii) acclimations of leaf area index and Vcmax on the carbon and water dynamics of P. koraiensis. We found that there was a reduction in net primary productivity (NPP) under the SSP2-4.5 scenario, but not under SSP5-8.5, compared to the baseline, due to an imbalance between increases in atmospheric CO2 and temperature. A decrease in leaf area index and an increase in Vcmax of P. koraiensis were expected if acclimations were made to reduce its leaf temperature. Under such acclimation pathways, it would be expected that the well-known CO2 fertilizer effects on NPP would be attenuated.
Forest EcosystemsEnvironmental Science-Nature and Landscape Conservation
CiteScore
7.10
自引率
4.90%
发文量
1115
审稿时长
22 days
期刊介绍:
Forest Ecosystems is an open access, peer-reviewed journal publishing scientific communications from any discipline that can provide interesting contributions about the structure and dynamics of "natural" and "domesticated" forest ecosystems, and their services to people. The journal welcomes innovative science as well as application oriented work that will enhance understanding of woody plant communities. Very specific studies are welcome if they are part of a thematic series that provides some holistic perspective that is of general interest.