Distinguishing Between Insolation‐Driven and Phase‐Locked 100‐Kyr Ice Age Scenarios Using Example Models

IF 3.2 2区 地球科学 Q2 GEOSCIENCES, MULTIDISCIPLINARY Paleoceanography and Paleoclimatology Pub Date : 2024-03-01 DOI:10.1029/2023pa004739
Kirstin Koepnick, Eli Tziperman
{"title":"Distinguishing Between Insolation‐Driven and Phase‐Locked 100‐Kyr Ice Age Scenarios Using Example Models","authors":"Kirstin Koepnick, Eli Tziperman","doi":"10.1029/2023pa004739","DOIUrl":null,"url":null,"abstract":"Glacial‐interglacial oscillations exhibit a periodicity of approximately 100 Kyr during the late Pleistocene. Insolation variations are understood to play a vital role in these ice ages, yet their exact effect is still unknown; the 100 Kyr ice ages may be explained in two different ways. They could be purely insolation‐driven, such that ice ages are a consequence of insolation variations and would not have existed without these variations. Or, ice ages may be self‐sustained oscillations, where they would have existed even without insolation variations. We develop several observable measures that are used to differentiate between the two scenarios and can help to determine which one is more likely based on the observed proxy record. We demonstrate these analyses using two representative models. First, we find that the self‐sustained model best fits the ice volume proxy record for the full 800‐Kyr time period. Next, the same model also shows a 100 Kyr peak consistent with observations, yet the insolation‐driven model exhibits a dominant 400 Kyr spectral peak inconsistent with observations. Our third measure indicates that midpoints in ice volume during terminations do not always occur during the same phase of insolation in both observations and the self‐sustained scenario, whereas they do in the insolation‐driven scenario. While some of these results suggest that the self‐sustained ice ages are more consistent with the observed record, they rely on simple representations of the two scenarios. To draw robust conclusions, a broader class of models should be tested using this method of producing observable differences.","PeriodicalId":54239,"journal":{"name":"Paleoceanography and Paleoclimatology","volume":null,"pages":null},"PeriodicalIF":3.2000,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Paleoceanography and Paleoclimatology","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1029/2023pa004739","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Glacial‐interglacial oscillations exhibit a periodicity of approximately 100 Kyr during the late Pleistocene. Insolation variations are understood to play a vital role in these ice ages, yet their exact effect is still unknown; the 100 Kyr ice ages may be explained in two different ways. They could be purely insolation‐driven, such that ice ages are a consequence of insolation variations and would not have existed without these variations. Or, ice ages may be self‐sustained oscillations, where they would have existed even without insolation variations. We develop several observable measures that are used to differentiate between the two scenarios and can help to determine which one is more likely based on the observed proxy record. We demonstrate these analyses using two representative models. First, we find that the self‐sustained model best fits the ice volume proxy record for the full 800‐Kyr time period. Next, the same model also shows a 100 Kyr peak consistent with observations, yet the insolation‐driven model exhibits a dominant 400 Kyr spectral peak inconsistent with observations. Our third measure indicates that midpoints in ice volume during terminations do not always occur during the same phase of insolation in both observations and the self‐sustained scenario, whereas they do in the insolation‐driven scenario. While some of these results suggest that the self‐sustained ice ages are more consistent with the observed record, they rely on simple representations of the two scenarios. To draw robust conclusions, a broader class of models should be tested using this method of producing observable differences.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用示例模型区分日照驱动型和相位锁定型 100-Kyr 冰期情景
在更新世晚期,冰川-间冰期振荡呈现出约 100 K 年的周期性。据了解,日照变化在这些冰期中起着至关重要的作用,但其确切影响尚不清楚。它们可能纯粹是日照驱动的,即冰期是日照变化的结果,没有日照变化就不会有冰期。或者,冰期可能是自我维持的振荡,即使没有日照变化,冰期也会存在。我们开发了几种可观测的测量方法,用于区分这两种情况,并有助于根据观测到的代用记录确定哪种情况更有可能发生。我们使用两个具有代表性的模型来演示这些分析。首先,我们发现自持模型最符合整个 800Kyr 时间段的冰量代用记录。其次,同一模型也显示出与观测结果一致的 100Kyr 峰值,而日照驱动模型则显示出与观测结果不一致的 400Kyr 主光谱峰值。我们的第三个测量结果表明,在观测结果和自持情景中,冰量终止时的中点并不总是出现在同一日照阶段,而在日照驱动情景中,冰量终止时的中点却总是出现在同一日照阶段。虽然其中一些结果表明,自我维持的冰期与观测记录更加一致,但它们依赖于对两种情景的简单描述。为了得出可靠的结论,应该用这种产生可观测差异的方法对更多的模型进行检验。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Paleoceanography and Paleoclimatology
Paleoceanography and Paleoclimatology Earth and Planetary Sciences-Atmospheric Science
CiteScore
6.20
自引率
11.40%
发文量
107
期刊介绍: Paleoceanography and Paleoclimatology (PALO) publishes papers dealing with records of past environments, biota and climate. Understanding of the Earth system as it was in the past requires the employment of a wide range of approaches including marine and lacustrine sedimentology and speleothems; ice sheet formation and flow; stable isotope, trace element, and organic geochemistry; paleontology and molecular paleontology; evolutionary processes; mineralization in organisms; understanding tree-ring formation; seismic stratigraphy; physical, chemical, and biological oceanography; geochemical, climate and earth system modeling, and many others. The scope of this journal is regional to global, rather than local, and includes studies of any geologic age (Precambrian to Quaternary, including modern analogs). Within this framework, papers on the following topics are to be included: chronology, stratigraphy (where relevant to correlation of paleoceanographic events), paleoreconstructions, paleoceanographic modeling, paleocirculation (deep, intermediate, and shallow), paleoclimatology (e.g., paleowinds and cryosphere history), global sediment and geochemical cycles, anoxia, sea level changes and effects, relations between biotic evolution and paleoceanography, biotic crises, paleobiology (e.g., ecology of “microfossils” used in paleoceanography), techniques and approaches in paleoceanographic inferences, and modern paleoceanographic analogs, and quantitative and integrative analysis of coupled ocean-atmosphere-biosphere processes. Paleoceanographic and Paleoclimate studies enable us to use the past in order to gain information on possible future climatic and biotic developments: the past is the key to the future, just as much and maybe more than the present is the key to the past.
期刊最新文献
Extreme Planktic Foraminiferal Dwarfism Across the ETM2 in the Tethys Realm in Response to Warming Reconstruction of Cenozoic δ11Bsw Using a Gaussian Process Impact of Intra‐Skeletal Calcite on the Preservation of Coral Geochemistry and Implications for Paleoclimate Reconstruction Tropical Warming and Intensification of the West African Monsoon During the Miocene Climatic Optimum Shell Reworking Impacts on Climate Variability Reconstructions Using Individual Foraminiferal Analyses
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1