Numerical and analytical studies on the coupling effects of unloading and cutterhead vibration on tunnel face in dry sandy ground

IF 8.2 1区 工程技术 Q1 ENGINEERING, CIVIL Underground Space Pub Date : 2024-03-18 DOI:10.1016/j.undsp.2023.11.019
Junzuo He , Shaoming Liao , Mengbo Liu , Motoi Iwanami , Yanqing Men
{"title":"Numerical and analytical studies on the coupling effects of unloading and cutterhead vibration on tunnel face in dry sandy ground","authors":"Junzuo He ,&nbsp;Shaoming Liao ,&nbsp;Mengbo Liu ,&nbsp;Motoi Iwanami ,&nbsp;Yanqing Men","doi":"10.1016/j.undsp.2023.11.019","DOIUrl":null,"url":null,"abstract":"<div><p>When tunnelling in difficult ground conditions, shield machine would inevitably produce significant ground loss and vibration, which may disturb the ground ahead of the tunnel face. In this paper, discrete element models calibrated by model tests were established to investigate the response of tunnel face under the coupling effects of unloading and cutterhead vibrations. The results show that the friction angle reduction under cyclic loading and vibration attenuation in the sandy ground are significant and can be estimated by the fitted exponential functions. Under cutterhead vibration, the tunnel face stability is undermined and the limit support pressure (LSP) increases to 1.4 times as that in the static case with the growth of frequency and amplitude. Meanwhile, the loosening zone becomes wider and the arching effect is weakened with the reduction of peak horizontal stress and the increase of vertical stress above the tunnel. Based on the numerical results, a pseudo-static method was introduced into the limit equilibrium analysis of the wedge-prism model for calculating the LSP under vibration. With an error rate less than 5.2%, the proposed analytical method is well validated. Further analytical calculation reveals that the LSP would increase with the growth of vibration amplitude, vibration frequency and covered depth but decrease with the increase of friction angle. This study can not only lay a solid foundation for the further investigation of ground loss, ground water and soft-hard heterogeneous ground under cutterhead vibration, but also provide meaningful references for the control of environmental disturbance in practice.</p></div>","PeriodicalId":48505,"journal":{"name":"Underground Space","volume":"18 ","pages":"Pages 256-272"},"PeriodicalIF":8.2000,"publicationDate":"2024-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2467967424000278/pdfft?md5=efbac2addf5e8237d860ed222a04baf3&pid=1-s2.0-S2467967424000278-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Underground Space","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2467967424000278","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0

Abstract

When tunnelling in difficult ground conditions, shield machine would inevitably produce significant ground loss and vibration, which may disturb the ground ahead of the tunnel face. In this paper, discrete element models calibrated by model tests were established to investigate the response of tunnel face under the coupling effects of unloading and cutterhead vibrations. The results show that the friction angle reduction under cyclic loading and vibration attenuation in the sandy ground are significant and can be estimated by the fitted exponential functions. Under cutterhead vibration, the tunnel face stability is undermined and the limit support pressure (LSP) increases to 1.4 times as that in the static case with the growth of frequency and amplitude. Meanwhile, the loosening zone becomes wider and the arching effect is weakened with the reduction of peak horizontal stress and the increase of vertical stress above the tunnel. Based on the numerical results, a pseudo-static method was introduced into the limit equilibrium analysis of the wedge-prism model for calculating the LSP under vibration. With an error rate less than 5.2%, the proposed analytical method is well validated. Further analytical calculation reveals that the LSP would increase with the growth of vibration amplitude, vibration frequency and covered depth but decrease with the increase of friction angle. This study can not only lay a solid foundation for the further investigation of ground loss, ground water and soft-hard heterogeneous ground under cutterhead vibration, but also provide meaningful references for the control of environmental disturbance in practice.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
干沙地隧道工作面卸载和刀盘振动耦合效应的数值和分析研究
在复杂地层条件下掘进时,盾构机不可避免地会产生较大的地层损失和振动,从而扰动隧道工作面前方的地层。本文建立了经模型试验校核的离散元模型,以研究隧道工作面在卸载和刀盘振动耦合效应下的响应。结果表明,循环加载下的摩擦角减小和砂质地层中的振动衰减非常显著,可通过拟合的指数函数进行估算。在刀盘振动下,隧道面的稳定性受到破坏,随着频率和振幅的增加,极限支撑压力(LSP)增加到静态情况下的 1.4 倍。同时,随着隧道上方水平应力峰值的降低和垂直应力的增加,松动区变宽,起拱效应减弱。根据数值结果,在楔棱模型的极限平衡分析中引入了伪静力法,用于计算振动下的 LSP。提出的分析方法误差率小于 5.2%,得到了很好的验证。进一步的分析计算表明,LSP 会随着振幅、振动频率和覆盖深度的增加而增加,但会随着摩擦角的增加而减小。这项研究不仅能为进一步研究刀盘振动下的地层损失、地下水和软硬异质地层奠定坚实的基础,还能为实践中的环境扰动控制提供有意义的参考。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Underground Space
Underground Space ENGINEERING, CIVIL-
CiteScore
10.20
自引率
14.10%
发文量
71
审稿时长
63 days
期刊介绍: Underground Space is an open access international journal without article processing charges (APC) committed to serving as a scientific forum for researchers and practitioners in the field of underground engineering. The journal welcomes manuscripts that deal with original theories, methods, technologies, and important applications throughout the life-cycle of underground projects, including planning, design, operation and maintenance, disaster prevention, and demolition. The journal is particularly interested in manuscripts related to the latest development of smart underground engineering from the perspectives of resilience, resources saving, environmental friendliness, humanity, and artificial intelligence. The manuscripts are expected to have significant innovation and potential impact in the field of underground engineering, and should have clear association with or application in underground projects.
期刊最新文献
Analysis of hydraulic breakdown and seepage of tail sealing system in shield tunnel machines Characteristics of deformation and defect of shield tunnel in coastal structured soil in China Detecting soil mixing, grain size distribution, and clogging potential of tunnel excavation face by classification-regression algorithms using EPBM operational data Experimental study on mechanical behavior and countermeasures of mountain tunnels under strike-slip fault movement Numerical studies on the synergistic effects of smoke extraction and control performance by mechanical ventilation shafts during tunnel fires
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1