Driven by the “dual carbon” strategy, the functionality of coal mine underground reservoirs is transitioning toward multimedia collaborative storage, such as CO2 geological sequestration and strategic energy reserves. The microscopic structures of the coal pillar dams, which are subjected to mining-induced damage and long-term infiltration erosion by highly mineralized mine water, continuously deteriorate over time, posing significant risks to the long-term safety and stability of the reservoirs. This study, based on the Lingxin Coal Mine Underground Reservoir Demonstration Project, employs a multi-technique characterization approach including X-ray diffraction (XRD), scanning electron microscope, nuclear magnetic resonance, and computed tomography to systematically reveal the multiscale collaborative erosion mechanisms of highly mineralized mine water on the mineral composition, crystal structure, and pore development of coal pillar dams. The results indicate: (1) significant concentration-dependent deterioration of mineral composition and crystal structure; kaolinite hydrolysis had a weakening effect on XRD peaks while quartz remained inert; (2) initiation of progressive microstructural damage at boundaries via dissolution/loosening; this damage advanced through layered mineral delamination and pore development (evidenced by NMR T2 broadening), resulting in irreversible void formation with chloride precipitation; (3) formation of pore-throat halite crystals, primarily due to chloride ions (Cl–); these crystals propagated microfractures through salt-expansion stress, establishing a cyclic dissolution–migration–crystallization–cracking process; (4) triggering of accelerated deterioration of the coal matrix owing to prolonged retention; this induced time- and concentration-dependent expansion and interconnection of pore-fracture networks, resulting in geomechanical deterioration.
扫码关注我们
求助内容:
应助结果提醒方式:
