Ziming Ye , Yi Zeng , Xiang Xiong , Sen Gao , Chen Shen , Shiyan Chen , Tianxing Jiang , Ge Yang
{"title":"Revealing the solid-state reaction process among multiphase multicomponent ceramic during ablation","authors":"Ziming Ye , Yi Zeng , Xiang Xiong , Sen Gao , Chen Shen , Shiyan Chen , Tianxing Jiang , Ge Yang","doi":"10.1016/j.apmate.2024.100189","DOIUrl":null,"url":null,"abstract":"<div><p>Multiphase design is a promising approach to achieve superior ablation resistance of multicomponent ultra-high temperature ceramic, while understanding the ablation mechanism is the foundation. Here, through investigating a three-phase multicomponent ceramic consisting of Hf-rich carbide, Nb-rich carbide, and Zr-rich silicide phases, we report a newly discovered solid-state reaction process among multiphase multicomponent ceramic during ablation. It was found that this solid-state reaction occurred in the matrix/oxide scale interface region. In this process, metal cations are counter-diffused between the multicomponent phases, thereby resulting in their composition evolution, which allows the multicomponent phases to exist stably under a higher oxygen partial pressure, leading to the improvement of thermodynamic stability of three-phase multicomponent ceramic. Additionally, this solid-state reaction process appears synergistic with the preferential oxidation behavior among the oxide scale in enhancing the ablation performance.</p></div>","PeriodicalId":7283,"journal":{"name":"Advanced Powder Materials","volume":"3 4","pages":"Article 100189"},"PeriodicalIF":0.0000,"publicationDate":"2024-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2772834X24000204/pdfft?md5=f83ea47616df40a39cc0f056db945f41&pid=1-s2.0-S2772834X24000204-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Powder Materials","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772834X24000204","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Multiphase design is a promising approach to achieve superior ablation resistance of multicomponent ultra-high temperature ceramic, while understanding the ablation mechanism is the foundation. Here, through investigating a three-phase multicomponent ceramic consisting of Hf-rich carbide, Nb-rich carbide, and Zr-rich silicide phases, we report a newly discovered solid-state reaction process among multiphase multicomponent ceramic during ablation. It was found that this solid-state reaction occurred in the matrix/oxide scale interface region. In this process, metal cations are counter-diffused between the multicomponent phases, thereby resulting in their composition evolution, which allows the multicomponent phases to exist stably under a higher oxygen partial pressure, leading to the improvement of thermodynamic stability of three-phase multicomponent ceramic. Additionally, this solid-state reaction process appears synergistic with the preferential oxidation behavior among the oxide scale in enhancing the ablation performance.