Semantic learning and attention dynamics for behavioral classification in police narratives

Q2 Health Professions Smart Health Pub Date : 2024-03-23 DOI:10.1016/j.smhl.2024.100479
Dinesh Chowdary Attota, Abm Adnan Azmee, Md. Abdullah Al Hafiz Khan, Yong Pei, Dominic Thomas, Monica Nandan
{"title":"Semantic learning and attention dynamics for behavioral classification in police narratives","authors":"Dinesh Chowdary Attota,&nbsp;Abm Adnan Azmee,&nbsp;Md. Abdullah Al Hafiz Khan,&nbsp;Yong Pei,&nbsp;Dominic Thomas,&nbsp;Monica Nandan","doi":"10.1016/j.smhl.2024.100479","DOIUrl":null,"url":null,"abstract":"<div><p>The proactive identification of behavioral health incidents concerns from police reports is a critical yet underexplored area. The law enforcement officers provide follow-up services to improve community life by manually analyzing and identifying generated public narrative reports after the 911 incident calls. Therefore, automatically identifying these behavioral health calls from public narrative reports helps reduce the current manual labor-intensive identification process for law enforcement officers. In this work, we introduce a novel, multi-faceted approach that combines manual expert annotations, natural language processing (NLP), and cutting-edge machine learning strategies to classify and understand these incidents within police narratives efficiently. Our proposed method retrieves relevant narrative reports utilizing domain knowledge as behavioral health cues as terms/keywords. Our approach automatically extracts different categories of behavioral health cues by utilizing the limited domain knowledge enabled behavioral health terms using a cosine similarity-based thresholding approach. The behavioral health classification model employs an automatic attention-aware feature representation of terms/keywords, categories, and narrative reports to identify behavioral health cases with an accuracy of 85%. Extensive evaluation shows that our proposed model outperforms all the state-of-the-art models by approximately 4%.</p></div>","PeriodicalId":37151,"journal":{"name":"Smart Health","volume":"32 ","pages":"Article 100479"},"PeriodicalIF":0.0000,"publicationDate":"2024-03-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Smart Health","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352648324000357","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Health Professions","Score":null,"Total":0}
引用次数: 0

Abstract

The proactive identification of behavioral health incidents concerns from police reports is a critical yet underexplored area. The law enforcement officers provide follow-up services to improve community life by manually analyzing and identifying generated public narrative reports after the 911 incident calls. Therefore, automatically identifying these behavioral health calls from public narrative reports helps reduce the current manual labor-intensive identification process for law enforcement officers. In this work, we introduce a novel, multi-faceted approach that combines manual expert annotations, natural language processing (NLP), and cutting-edge machine learning strategies to classify and understand these incidents within police narratives efficiently. Our proposed method retrieves relevant narrative reports utilizing domain knowledge as behavioral health cues as terms/keywords. Our approach automatically extracts different categories of behavioral health cues by utilizing the limited domain knowledge enabled behavioral health terms using a cosine similarity-based thresholding approach. The behavioral health classification model employs an automatic attention-aware feature representation of terms/keywords, categories, and narrative reports to identify behavioral health cases with an accuracy of 85%. Extensive evaluation shows that our proposed model outperforms all the state-of-the-art models by approximately 4%.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
警察叙事中行为分类的语义学习和注意力动态变化
从警方报告中主动识别行为健康事件问题是一个重要但尚未充分开发的领域。执法人员在接到 911 事件报警后,通过人工分析和识别生成的公共陈述报告来提供后续服务,以改善社区生活。因此,从公众叙述报告中自动识别这些行为健康电话有助于减少执法人员目前人工密集型的识别过程。在这项工作中,我们介绍了一种新颖的多方面方法,该方法结合了人工专家注释、自然语言处理(NLP)和尖端的机器学习策略,可高效地对警方叙述中的这些事件进行分类和理解。我们提出的方法利用领域知识,将行为健康线索作为术语/关键词,检索相关的叙述报告。我们的方法利用有限的领域知识,采用基于余弦相似性的阈值法自动提取不同类别的行为健康线索。行为健康分类模型利用术语/关键词、类别和叙述性报告的自动注意力感知特征表示来识别行为健康病例,准确率高达 85%。广泛的评估表明,我们提出的模型比所有最先进的模型高出约 4%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Smart Health
Smart Health Computer Science-Computer Science Applications
CiteScore
6.50
自引率
0.00%
发文量
81
期刊最新文献
Editorial Board Smart health practices: Strategies to improve healthcare efficiency through digital twin technology Human knowledge-based artificial intelligence methods for skin cancer management: Accuracy and interpretability study SAFE: Sound Analysis for Fall Event detection using machine learning Latent Space Representation of Adversarial AutoEncoder for Human Activity Recognition: Application to a low-cost commercial force plate and inertial measurement units
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1