Experimental Investigation and Computational Insights of Enhanced Rheological Stability of Water-Based Drilling Fluids by Microspherical Polymers

IF 3.2 3区 工程技术 Q1 ENGINEERING, PETROLEUM SPE Journal Pub Date : 2024-03-01 DOI:10.2118/219469-pa
Lin Xu, Jiamin Shen, Mingbiao Xu, Shuqi Wu, Xiaotang Wang, Yu Bao, Meilan Huang, Chunyan Yu, Yu Ding
{"title":"Experimental Investigation and Computational Insights of Enhanced Rheological Stability of Water-Based Drilling Fluids by Microspherical Polymers","authors":"Lin Xu, Jiamin Shen, Mingbiao Xu, Shuqi Wu, Xiaotang Wang, Yu Bao, Meilan Huang, Chunyan Yu, Yu Ding","doi":"10.2118/219469-pa","DOIUrl":null,"url":null,"abstract":"\n 3D bulk polymer, as an alternative to linear polymer, has exhibited large potential in formulating high-performance water-based drilling fluids. Understanding the mechanism behind the enhanced rheological stability of drilling fluids by microspherical polymers is critical for designing and developing new high-performance drilling fluids. In this work, we conducted a pioneering investigation that integrated experimental techniques with computational modeling, to explore the enhancement mechanism involved in the targeted drilling fluids. Inverse emulsion polymerization experiments were first carried out to fabricate the microspherical polymer acrylic acid (AA), acrylamide (AM), and 2-acryloylamino-2-methyl-1-propanesulfonic acid [P(AA-AM-AMPS)], and then physicochemical properties of microspherical polymer were characterized. Subsequently, the performance of drilling fluids with microspherical polymer as an additive was systematically evaluated. Finally, molecular simulations were used to investigate the characteristics of chemical active sites, molecular conformation, and structural variation at various temperatures. The results showed that the final microspherical polymer has a core-shell structure, with an average size of 198.3 nm and a molecular weight of 6.2×106 g/mol. The 3D structure exhibits good thermal stability, and thermal decomposition occurs above 220°C. The drilling fluids formulated with the microspherical polymer showed better rheological stability in the medium-low (4–65°C) and medium-ultrahigh (40–240°C) temperature ranges, compared with the relevant drilling fluids with the parallel linear polymer. Analyses on electrostatic potentials (ESPs) and frontier molecular orbital (FMO) revealed that active groups within the confined sphere domain mainly include carbonyl C = O and amide -CO(NH2). Additionally, these active groups exhibit a hierarchical distribution in the outer molecular region. Analyses on the radius of gyration (Rg) and the radial distribution function g(r) further validated the core-shell structure of microspherical polymer and its temperature-resistant stability. Moreover, a new self-consistent structural compensation model was proposed to rationalize the structure-activity relationship of microspherical polymer in drilling fluids. The computational results align well with the experimental findings. This pioneering work will provide valuable information for both the synthesis of new functional additives and the formulation of tailored-performance drilling fluids.","PeriodicalId":22252,"journal":{"name":"SPE Journal","volume":null,"pages":null},"PeriodicalIF":3.2000,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SPE Journal","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.2118/219469-pa","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, PETROLEUM","Score":null,"Total":0}
引用次数: 0

Abstract

3D bulk polymer, as an alternative to linear polymer, has exhibited large potential in formulating high-performance water-based drilling fluids. Understanding the mechanism behind the enhanced rheological stability of drilling fluids by microspherical polymers is critical for designing and developing new high-performance drilling fluids. In this work, we conducted a pioneering investigation that integrated experimental techniques with computational modeling, to explore the enhancement mechanism involved in the targeted drilling fluids. Inverse emulsion polymerization experiments were first carried out to fabricate the microspherical polymer acrylic acid (AA), acrylamide (AM), and 2-acryloylamino-2-methyl-1-propanesulfonic acid [P(AA-AM-AMPS)], and then physicochemical properties of microspherical polymer were characterized. Subsequently, the performance of drilling fluids with microspherical polymer as an additive was systematically evaluated. Finally, molecular simulations were used to investigate the characteristics of chemical active sites, molecular conformation, and structural variation at various temperatures. The results showed that the final microspherical polymer has a core-shell structure, with an average size of 198.3 nm and a molecular weight of 6.2×106 g/mol. The 3D structure exhibits good thermal stability, and thermal decomposition occurs above 220°C. The drilling fluids formulated with the microspherical polymer showed better rheological stability in the medium-low (4–65°C) and medium-ultrahigh (40–240°C) temperature ranges, compared with the relevant drilling fluids with the parallel linear polymer. Analyses on electrostatic potentials (ESPs) and frontier molecular orbital (FMO) revealed that active groups within the confined sphere domain mainly include carbonyl C = O and amide -CO(NH2). Additionally, these active groups exhibit a hierarchical distribution in the outer molecular region. Analyses on the radius of gyration (Rg) and the radial distribution function g(r) further validated the core-shell structure of microspherical polymer and its temperature-resistant stability. Moreover, a new self-consistent structural compensation model was proposed to rationalize the structure-activity relationship of microspherical polymer in drilling fluids. The computational results align well with the experimental findings. This pioneering work will provide valuable information for both the synthesis of new functional additives and the formulation of tailored-performance drilling fluids.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
微球聚合物增强水基钻井液流变稳定性的实验研究与计算见解
三维块状聚合物作为线性聚合物的替代品,在配制高性能水基钻井液方面具有巨大潜力。了解微球聚合物增强钻井液流变稳定性的机理对于设计和开发新型高性能钻井液至关重要。在这项工作中,我们进行了一项开创性的研究,将实验技术与计算建模相结合,探索目标钻井液的增强机理。首先进行了反乳液聚合实验,制备了微球聚合物丙烯酸(AA)、丙烯酰胺(AM)和 2-丙烯酰氨基-2-甲基-1-丙磺酸[P(AA-AM-AMPS)],然后对微球聚合物的理化性质进行了表征。随后,对以微球聚合物为添加剂的钻井液的性能进行了系统评估。最后,利用分子模拟研究了不同温度下的化学活性位点特征、分子构象和结构变化。结果表明,最终的微球聚合物具有核壳结构,平均尺寸为 198.3 nm,分子量为 6.2×106 g/mol。这种三维结构具有良好的热稳定性,在 220°C 以上会发生热分解。与使用平行线性聚合物的相关钻井液相比,使用微球形聚合物配制的钻井液在中低温(4-65°C)和中高温(40-240°C)范围内具有更好的流变稳定性。对静电位(ESP)和前沿分子轨道(FMO)的分析表明,封闭球域内的活性基团主要包括羰基 C = O 和酰胺 -CO(NH2)。此外,这些活性基团在分子外部区域呈现分层分布。对回转半径(Rg)和径向分布函数 g(r) 的分析进一步验证了微球聚合物的核壳结构及其耐温稳定性。此外,还提出了一种新的自洽结构补偿模型,以合理解释微球聚合物在钻井液中的结构-活性关系。计算结果与实验结果非常吻合。这项开创性工作将为新型功能添加剂的合成和定制高性能钻井液的配制提供有价值的信息。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
SPE Journal
SPE Journal 工程技术-工程:石油
CiteScore
7.20
自引率
11.10%
发文量
229
审稿时长
4.5 months
期刊介绍: Covers theories and emerging concepts spanning all aspects of engineering for oil and gas exploration and production, including reservoir characterization, multiphase flow, drilling dynamics, well architecture, gas well deliverability, numerical simulation, enhanced oil recovery, CO2 sequestration, and benchmarking and performance indicators.
期刊最新文献
Experimental Study on the Effect of Rock Mechanical Properties and Fracture Morphology Features on Lost Circulation Spatiotemporal X-Ray Imaging of Neat and Viscosified CO2 in Displacement of Brine-Saturated Porous Media Novel Resin-Coated Sand Placement Design Guidelines for Controlling Proppant Flowback Post-Slickwater Hydraulic Fracturing Treatments Study on Plugging the Multiscale Water Channeling in Low-Permeability Heterogeneous Porous Media Based on the Growth of Bacteria Integrated Optimization of Hybrid Steam-Solvent Injection in Post-CHOPS Reservoirs with Consideration of Wormhole Networks and Foamy Oil Behavior
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1