Vertical-axis turbine performance enhancement with physics-informed blade pitch control. Basic principles and proof of concept with high-fidelity numerical simulation
{"title":"Vertical-axis turbine performance enhancement with physics-informed blade pitch control. Basic principles and proof of concept with high-fidelity numerical simulation","authors":"Kai S. Wisner, Meilin Yu","doi":"10.1063/5.0178535","DOIUrl":null,"url":null,"abstract":"In this study, we developed active physics-informed turbine blade pitch control methods to conquer the inconsistent energy harvesting efficiency challenges encountered by the vertical-axis turbines (VATs) technology. Specifically, individual turbine blades were pitched by actuators following commands from the physics-informed controllers, and the turbine performance improvements as a result of the blade pitch control mechanism and the associated flow physics were studied. The aim of the blade pitch control was to maintain constant effective angles of attack (AoAs) experienced by turbine blades through active blade pitch, and the constant AoA function was designed to facilitate control mechanism implementation into real-world VATs. To gain in-depth understanding of the capability of the control, flow physics was studied for different constant AoA control strategies across a wide range of tip speed ratios and wind speeds and was compared with that from the corresponding baselines without control, and that from the sinusoidal AoA control strategy. The comparison between the turbine performance with constant AoA control and that without control showed a consistent increase in the time-averaged net power coefficient, a measure of energy harvesting efficiency taking out of the actuator loss, ranging from 27.4% to 704.0% across a wide spread of wind speeds. The superior turbine performance with constant AoA control was largely attributed to blade dynamic stall management during the blade upstream and downstream cycles and the transition between the two cycles.","PeriodicalId":16953,"journal":{"name":"Journal of Renewable and Sustainable Energy","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Renewable and Sustainable Energy","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1063/5.0178535","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
In this study, we developed active physics-informed turbine blade pitch control methods to conquer the inconsistent energy harvesting efficiency challenges encountered by the vertical-axis turbines (VATs) technology. Specifically, individual turbine blades were pitched by actuators following commands from the physics-informed controllers, and the turbine performance improvements as a result of the blade pitch control mechanism and the associated flow physics were studied. The aim of the blade pitch control was to maintain constant effective angles of attack (AoAs) experienced by turbine blades through active blade pitch, and the constant AoA function was designed to facilitate control mechanism implementation into real-world VATs. To gain in-depth understanding of the capability of the control, flow physics was studied for different constant AoA control strategies across a wide range of tip speed ratios and wind speeds and was compared with that from the corresponding baselines without control, and that from the sinusoidal AoA control strategy. The comparison between the turbine performance with constant AoA control and that without control showed a consistent increase in the time-averaged net power coefficient, a measure of energy harvesting efficiency taking out of the actuator loss, ranging from 27.4% to 704.0% across a wide spread of wind speeds. The superior turbine performance with constant AoA control was largely attributed to blade dynamic stall management during the blade upstream and downstream cycles and the transition between the two cycles.
期刊介绍:
The Journal of Renewable and Sustainable Energy (JRSE) is an interdisciplinary, peer-reviewed journal covering all areas of renewable and sustainable energy relevant to the physical science and engineering communities. The interdisciplinary approach of the publication ensures that the editors draw from researchers worldwide in a diverse range of fields.
Topics covered include:
Renewable energy economics and policy
Renewable energy resource assessment
Solar energy: photovoltaics, solar thermal energy, solar energy for fuels
Wind energy: wind farms, rotors and blades, on- and offshore wind conditions, aerodynamics, fluid dynamics
Bioenergy: biofuels, biomass conversion, artificial photosynthesis
Distributed energy generation: rooftop PV, distributed fuel cells, distributed wind, micro-hydrogen power generation
Power distribution & systems modeling: power electronics and controls, smart grid
Energy efficient buildings: smart windows, PV, wind, power management
Energy conversion: flexoelectric, piezoelectric, thermoelectric, other technologies
Energy storage: batteries, supercapacitors, hydrogen storage, other fuels
Fuel cells: proton exchange membrane cells, solid oxide cells, hybrid fuel cells, other
Marine and hydroelectric energy: dams, tides, waves, other
Transportation: alternative vehicle technologies, plug-in technologies, other
Geothermal energy