Michael J. Abere, Richard J. Gallegos, Matthew W. Moorman, Mark A. Rodriguez, Paul G. Kotula, Rick A. Kellogg, David P. Adams
{"title":"Normally closed thermally activated irreversible solid state erbium hydrides switches","authors":"Michael J. Abere, Richard J. Gallegos, Matthew W. Moorman, Mark A. Rodriguez, Paul G. Kotula, Rick A. Kellogg, David P. Adams","doi":"10.1016/j.mne.2024.100243","DOIUrl":null,"url":null,"abstract":"<div><p>A thermally driven, micrometer-scale switch technology has been created that utilizes the ErH<sub>3</sub>/Er<sub>2</sub>O<sub>3</sub> materials system. The technology is comprised of novel thin film switches, interconnects, on-board micro-scale heaters for passive thermal environment sensing, and on-board micro-scale heaters for individualized switch actuation. Switches undergo a thermodynamically stable reduction/oxidation reaction leading to a multi-decade (>11 orders) change in resistance. The resistance contrast remains after cooling to room temperature, making them suitable as thermal fuses. An activation energy of 290 kJ/mol was calculated for the switch reaction, and a thermos-kinetic model was employed to determine switch times of 120 ms at 560 °C with the potential to scale to 1 ms at 680 °C.</p></div>","PeriodicalId":37111,"journal":{"name":"Micro and Nano Engineering","volume":"23 ","pages":"Article 100243"},"PeriodicalIF":2.8000,"publicationDate":"2024-03-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2590007224000066/pdfft?md5=02ad29251ac9b08fe75c93a60d170ab3&pid=1-s2.0-S2590007224000066-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Micro and Nano Engineering","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590007224000066","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
A thermally driven, micrometer-scale switch technology has been created that utilizes the ErH3/Er2O3 materials system. The technology is comprised of novel thin film switches, interconnects, on-board micro-scale heaters for passive thermal environment sensing, and on-board micro-scale heaters for individualized switch actuation. Switches undergo a thermodynamically stable reduction/oxidation reaction leading to a multi-decade (>11 orders) change in resistance. The resistance contrast remains after cooling to room temperature, making them suitable as thermal fuses. An activation energy of 290 kJ/mol was calculated for the switch reaction, and a thermos-kinetic model was employed to determine switch times of 120 ms at 560 °C with the potential to scale to 1 ms at 680 °C.