Structural and Morphological Characterization of MEH-PPV/Ag Composite

Suha Ahmad Jawad, Mustafa Mohammed Ali Hussein
{"title":"Structural and Morphological Characterization of MEH-PPV/Ag Composite","authors":"Suha Ahmad Jawad, Mustafa Mohammed Ali Hussein","doi":"10.30723/ijp.v22i1.1131","DOIUrl":null,"url":null,"abstract":"In this study, spin coating was used to prepare thin films of poly (2-methoxy-5-(2-ethylhexyloxy)-1, 4-phenylene vinylene) and silver (MEH-PPV/Ag) in this study. The physical characteristics of MEH-PPV/Ag thin films with various weight ratios (0.01, 0.02, 0.03, and 0.04%) were investigated by Fourier-transform infrared spectroscopy (FTIR), field emission scanning electron microscopy (FE-SEM), atomic force microscopy (AFM), X-ray diffraction analysis (XRD), and thermal testing. FTIR analysis showed that there were occurrences of the polymer's predicted chemical bonds. AFM tests show that when different amounts of silver are added to a polymer matrix, the film's surface roughness (root mean square) goes up from an average of 83.51 to 511.3 nm. FE-SEM analysis showed that a pure sample of the polymer formed evenly. However, when different amounts of Ag were added, clear balls or circles formed, showing the energy of mixing between the MEH-PPV and Ag. As silver addition transformed the polymer from amorphous to polycrystalline, XRD analysis revealed both phases. In tests comparing pure MEH-PPV to MEH-PPV/Ag, the polymer containing silver showed higher thermal conductivity.","PeriodicalId":517619,"journal":{"name":"Iraqi Journal of Physics","volume":"253 5","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Iraqi Journal of Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.30723/ijp.v22i1.1131","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this study, spin coating was used to prepare thin films of poly (2-methoxy-5-(2-ethylhexyloxy)-1, 4-phenylene vinylene) and silver (MEH-PPV/Ag) in this study. The physical characteristics of MEH-PPV/Ag thin films with various weight ratios (0.01, 0.02, 0.03, and 0.04%) were investigated by Fourier-transform infrared spectroscopy (FTIR), field emission scanning electron microscopy (FE-SEM), atomic force microscopy (AFM), X-ray diffraction analysis (XRD), and thermal testing. FTIR analysis showed that there were occurrences of the polymer's predicted chemical bonds. AFM tests show that when different amounts of silver are added to a polymer matrix, the film's surface roughness (root mean square) goes up from an average of 83.51 to 511.3 nm. FE-SEM analysis showed that a pure sample of the polymer formed evenly. However, when different amounts of Ag were added, clear balls or circles formed, showing the energy of mixing between the MEH-PPV and Ag. As silver addition transformed the polymer from amorphous to polycrystalline, XRD analysis revealed both phases. In tests comparing pure MEH-PPV to MEH-PPV/Ag, the polymer containing silver showed higher thermal conductivity.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
MEH-PPV/Ag 复合材料的结构和形态特征
本研究采用旋涂法制备聚(2-甲氧基-5-(2-乙基己氧基)-1,4-亚苯基乙烯)和银(MEH-PPV/Ag)薄膜。通过傅立叶变换红外光谱(FTIR)、场发射扫描电子显微镜(FE-SEM)、原子力显微镜(AFM)、X 射线衍射分析(XRD)和热测试,研究了不同重量比(0.01%、0.02%、0.03% 和 0.04%)的 MEH-PPV/Ag 薄膜的物理特性。傅立叶变换红外分析表明,聚合物出现了预期的化学键。原子力显微镜测试表明,当聚合物基体中加入不同数量的银时,薄膜的表面粗糙度(均方根)从平均 83.51 纳米上升到 511.3 纳米。FE-SEM 分析表明,纯聚合物样品能均匀地形成薄膜。然而,当添加不同量的银时,会形成清晰的球或圆圈,这表明 MEH-PPV 和银之间存在混合能量。由于银的加入使聚合物从无定形转变为多晶体,XRD 分析显示了这两种相。在比较纯 MEH-PPV 和 MEH-PPV/Ag 的测试中,含银聚合物的热导率更高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Study the Addition of Silver Dioxide on Some Optical Properties of Phosphate Bioactive Glass Influence of Laser Energy on the Structural and Optical Properties of Sn Nanoparticles produced with Laser-Induced Plasma Thermodynamic and Spectroscopic Properties Investigation of Coronene as a Function of the Number of Oxygen Atoms and Temperature via Density Functional Theory Fabrication of Carbon Quantum Dots/Alq3 Layer for NO2 Gas Sensor Corrosion Protection Performance of PACC and PACC-Metal Oxides Nanocomposites Electropolymerized Coating of Low Carbon Steel
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1