Erick Jimenez-Gonzalez, Chen Avraham, Asya Mikhaylov, Simona Bar-Haim, Ilana Nisky
{"title":"Providing Skin Stretch On The Lower Back - Design And Psychophysical Evaluation With A Stepping Task.","authors":"Erick Jimenez-Gonzalez, Chen Avraham, Asya Mikhaylov, Simona Bar-Haim, Ilana Nisky","doi":"10.1109/TOH.2024.3381336","DOIUrl":null,"url":null,"abstract":"<p><p>Haptic devices are becoming popular in many applications, including medical, gaming, and consumer devices. Yet, the majority of studies focus on the use of haptics for the upper limbs, with much less attention to the stimulation of other regions of the body such as the lower back. In this study, we designed three types of skin stretch stimulation devices that can be placed on a belt and apply tactile stimulation on the lower back. We present these devices that apply lateral, longitudinal, and rotational skin stretch stimulation on the lower back, and evaluate their effectiveness in providing haptic commands for the lower limbs of healthy participants. We designed psychophysical experiments that quantify the discrimination accuracy of participants with a stepping task. The results demonstrate the ability of participants to discriminate two out of three features of stimulation provided on the lower back. These results demonstrate that skin stretch on the lower back can effectively transmit haptic signals and elicit responses in the lower limb for various applications. Future studies are needed to optimize providing skin stretch on the lower back to benefit various applications such as training, rehabilitation, gaming, and assistive devices.</p>","PeriodicalId":13215,"journal":{"name":"IEEE Transactions on Haptics","volume":"PP ","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2024-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Haptics","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1109/TOH.2024.3381336","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, CYBERNETICS","Score":null,"Total":0}
引用次数: 0
Abstract
Haptic devices are becoming popular in many applications, including medical, gaming, and consumer devices. Yet, the majority of studies focus on the use of haptics for the upper limbs, with much less attention to the stimulation of other regions of the body such as the lower back. In this study, we designed three types of skin stretch stimulation devices that can be placed on a belt and apply tactile stimulation on the lower back. We present these devices that apply lateral, longitudinal, and rotational skin stretch stimulation on the lower back, and evaluate their effectiveness in providing haptic commands for the lower limbs of healthy participants. We designed psychophysical experiments that quantify the discrimination accuracy of participants with a stepping task. The results demonstrate the ability of participants to discriminate two out of three features of stimulation provided on the lower back. These results demonstrate that skin stretch on the lower back can effectively transmit haptic signals and elicit responses in the lower limb for various applications. Future studies are needed to optimize providing skin stretch on the lower back to benefit various applications such as training, rehabilitation, gaming, and assistive devices.
期刊介绍:
IEEE Transactions on Haptics (ToH) is a scholarly archival journal that addresses the science, technology, and applications associated with information acquisition and object manipulation through touch. Haptic interactions relevant to this journal include all aspects of manual exploration and manipulation of objects by humans, machines and interactions between the two, performed in real, virtual, teleoperated or networked environments. Research areas of relevance to this publication include, but are not limited to, the following topics: Human haptic and multi-sensory perception and action, Aspects of motor control that explicitly pertain to human haptics, Haptic interactions via passive or active tools and machines, Devices that sense, enable, or create haptic interactions locally or at a distance, Haptic rendering and its association with graphic and auditory rendering in virtual reality, Algorithms, controls, and dynamics of haptic devices, users, and interactions between the two, Human-machine performance and safety with haptic feedback, Haptics in the context of human-computer interactions, Systems and networks using haptic devices and interactions, including multi-modal feedback, Application of the above, for example in areas such as education, rehabilitation, medicine, computer-aided design, skills training, computer games, driver controls, simulation, and visualization.