Ultrasound Viscoelastography by Acoustic Radiation Force: A State-of-the-Art Review

Xufei Chen;Xueting Li;Simona Turco;Ruud J. G. van Sloun;Massimo Mischi
{"title":"Ultrasound Viscoelastography by Acoustic Radiation Force: A State-of-the-Art Review","authors":"Xufei Chen;Xueting Li;Simona Turco;Ruud J. G. van Sloun;Massimo Mischi","doi":"10.1109/TUFFC.2024.3381529","DOIUrl":null,"url":null,"abstract":"Ultrasound elastography (USE) is a promising tool for tissue characterization as several diseases result in alterations of tissue structure and composition, which manifest as changes in tissue mechanical properties. By imaging the tissue response to an applied mechanical excitation, USE mimics the manual palpation performed by clinicians to sense the tissue elasticity for diagnostic purposes. Next to elasticity, viscosity has recently been investigated as an additional, relevant, diagnostic biomarker. Moreover, since biological tissues are inherently viscoelastic, accounting for viscosity in the tissue characterization process enhances the accuracy of the elasticity estimation. Recently, methods exploiting different acquisition and processing techniques have been proposed to perform ultrasound viscoelastography. After introducing the physics describing viscoelasticity, a comprehensive overview of the currently available USE acquisition techniques is provided, followed by a structured review of the existing viscoelasticity estimators classified according to the employed processing technique. These estimators are further reviewed from a clinical usage perspective, and current outstanding challenges are discussed.","PeriodicalId":13322,"journal":{"name":"IEEE transactions on ultrasonics, ferroelectrics, and frequency control","volume":"71 5","pages":"536-557"},"PeriodicalIF":3.0000,"publicationDate":"2024-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on ultrasonics, ferroelectrics, and frequency control","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10478667/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ACOUSTICS","Score":null,"Total":0}
引用次数: 0

Abstract

Ultrasound elastography (USE) is a promising tool for tissue characterization as several diseases result in alterations of tissue structure and composition, which manifest as changes in tissue mechanical properties. By imaging the tissue response to an applied mechanical excitation, USE mimics the manual palpation performed by clinicians to sense the tissue elasticity for diagnostic purposes. Next to elasticity, viscosity has recently been investigated as an additional, relevant, diagnostic biomarker. Moreover, since biological tissues are inherently viscoelastic, accounting for viscosity in the tissue characterization process enhances the accuracy of the elasticity estimation. Recently, methods exploiting different acquisition and processing techniques have been proposed to perform ultrasound viscoelastography. After introducing the physics describing viscoelasticity, a comprehensive overview of the currently available USE acquisition techniques is provided, followed by a structured review of the existing viscoelasticity estimators classified according to the employed processing technique. These estimators are further reviewed from a clinical usage perspective, and current outstanding challenges are discussed.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用声辐射力进行超声粘弹性成像:最新技术综述。
超声弹性成像(USE)是一种用于组织特征描述的前景广阔的工具,因为多种疾病会导致组织结构和组成发生变化,表现为组织机械性能的变化。通过对组织对外加机械激励的反应进行成像,超声弹性成像模拟了临床医生为诊断目的而进行的手动触诊,以感知组织的弹性。除弹性外,粘度最近也被研究为另一种相关的诊断生物标志物。此外,由于生物组织本身具有粘弹性,在组织特征描述过程中考虑粘度可提高弹性估算的准确性。最近,人们提出了利用不同的采集和处理技术来进行超声粘弹性成像的方法。在介绍了描述粘弹性的物理学原理后,对目前可用的 USE 采集技术进行了全面概述,随后根据所采用的处理技术对现有的粘弹性估算器进行了结构性审查。从临床应用的角度对这些估算器进行了进一步评述,并讨论了当前面临的挑战。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
7.70
自引率
16.70%
发文量
583
审稿时长
4.5 months
期刊介绍: IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control includes the theory, technology, materials, and applications relating to: (1) the generation, transmission, and detection of ultrasonic waves and related phenomena; (2) medical ultrasound, including hyperthermia, bioeffects, tissue characterization and imaging; (3) ferroelectric, piezoelectric, and piezomagnetic materials, including crystals, polycrystalline solids, films, polymers, and composites; (4) frequency control, timing and time distribution, including crystal oscillators and other means of classical frequency control, and atomic, molecular and laser frequency control standards. Areas of interest range from fundamental studies to the design and/or applications of devices and systems.
期刊最新文献
TinyProbe: A Wearable 32-channel Multi-Modal Wireless Ultrasound Probe. LSMD: Long-Short Memory-Based Detection Network for Carotid Artery Detection in B-mode Ultrasound Video Streams. A Phantom-Free Approach for Estimating the Backscatter Coefficient of Aggregated Red Blood Cells applied to COVID-19 Patients. High-frequency wearable ultrasound array belt for small animal echocardiography. Deep Power-aware Tunable Weighting for Ultrasound Microvascular Imaging.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1