首页 > 最新文献

IEEE transactions on ultrasonics, ferroelectrics, and frequency control最新文献

英文 中文
TinyProbe: A Wearable 32-channel Multi-Modal Wireless Ultrasound Probe. TinyProbe:穿戴式 32 通道多模式无线超声探头
IF 3 2区 工程技术 Q1 ACOUSTICS Pub Date : 2024-11-12 DOI: 10.1109/TUFFC.2024.3496474
Sergei Vostrikov, Josquin Tille, Luca Benini, Andrea Cossettini

The need for continuous monitoring of cardiorespiratory activity, blood pressure, bladder, muscle motion analysis, and more, is pushing for research and development of wearable ultrasound devices. In this context, there is a critical need for highly configurable, energy-efficient wearable ultrasound systems with wireless access to raw data and long battery life. Previous exploratory works have primarily relied on bulky commercial research systems or custom-built prototypes with limited and narrowly-focused field applicability. This paper presents TINYPROBE, a novel multi-modal wearable ultrasound platform. TINYPROBE integrates a 32-channel ultrasound RX/TX frontend, including TX beamforming (64 Vpp excitations, 16 delay profiles) and analog-to-digital conversion (up to 30 Msps, 10 bit), with a WiFi link (21.6 Mbps, UDP), for wireless raw data access, all in a compact (57 × 35 × 20 mm) and lightweight (35 g) design. Employing advanced power-saving techniques and optimized electronics design, TINYPROBE achieves a power consumption of < 1W for imaging modes (32 ch., 33 Hz) and < 1.3W for high-PRF Doppler mode (2 ch., 1400 Hz). This results in a state-of-the-art power efficiency of 44.9 mW/Mbps for wireless US systems, ensuring multi-hour operation with a compact 500 mAh Li-Po battery. We validate TINYPROBE as a versatile, general-purpose wearable platform in multiple in-vivo imaging scenarios, including muscle and bladder imaging, and blood flow velocity measurements.

对心肺活动、血压、膀胱、肌肉运动分析等进行连续监测的需求推动了可穿戴超声设备的研发。在这种情况下,亟需可无线访问原始数据且电池寿命长的高配置、高能效可穿戴超声系统。以往的探索性工作主要依赖于笨重的商业研究系统或定制原型,这些系统的现场适用性有限且范围狭窄。本文介绍的 TINYPROBE 是一种新型多模态可穿戴超声平台。TINYPROBE 集成了 32 通道超声波 RX/TX 前端,包括 TX 波束成形(64 Vpp 激发,16 个延迟曲线)和模数转换(高达 30 Msps,10 位),以及用于无线原始数据访问的 WiFi 链接(21.6 Mbps,UDP),所有这些都采用紧凑(57 × 35 × 20 毫米)、轻巧(35 克)的设计。TINYPROBE 采用先进的省电技术和优化的电子设计,在成像模式(32 通道,33 Hz)下功耗小于 1W,在高PRF 多普勒模式(2 通道,1400 Hz)下功耗小于 1.3W。这使得无线 US 系统的能效达到了最先进的 44.9 mW/Mbps,确保了使用 500 mAh 锂聚合物电池就能工作多小时。我们在肌肉和膀胱成像以及血流速度测量等多个体内成像场景中验证了 TINYPROBE 是一种多功能、通用型可穿戴平台。
{"title":"TinyProbe: A Wearable 32-channel Multi-Modal Wireless Ultrasound Probe.","authors":"Sergei Vostrikov, Josquin Tille, Luca Benini, Andrea Cossettini","doi":"10.1109/TUFFC.2024.3496474","DOIUrl":"https://doi.org/10.1109/TUFFC.2024.3496474","url":null,"abstract":"<p><p>The need for continuous monitoring of cardiorespiratory activity, blood pressure, bladder, muscle motion analysis, and more, is pushing for research and development of wearable ultrasound devices. In this context, there is a critical need for highly configurable, energy-efficient wearable ultrasound systems with wireless access to raw data and long battery life. Previous exploratory works have primarily relied on bulky commercial research systems or custom-built prototypes with limited and narrowly-focused field applicability. This paper presents TINYPROBE, a novel multi-modal wearable ultrasound platform. TINYPROBE integrates a 32-channel ultrasound RX/TX frontend, including TX beamforming (64 V<sub>pp</sub> excitations, 16 delay profiles) and analog-to-digital conversion (up to 30 Msps, 10 bit), with a WiFi link (21.6 Mbps, UDP), for wireless raw data access, all in a compact (57 × 35 × 20 mm) and lightweight (35 g) design. Employing advanced power-saving techniques and optimized electronics design, TINYPROBE achieves a power consumption of < 1W for imaging modes (32 ch., 33 Hz) and < 1.3W for high-PRF Doppler mode (2 ch., 1400 Hz). This results in a state-of-the-art power efficiency of 44.9 mW/Mbps for wireless US systems, ensuring multi-hour operation with a compact 500 mAh Li-Po battery. We validate TINYPROBE as a versatile, general-purpose wearable platform in multiple in-vivo imaging scenarios, including muscle and bladder imaging, and blood flow velocity measurements.</p>","PeriodicalId":13322,"journal":{"name":"IEEE transactions on ultrasonics, ferroelectrics, and frequency control","volume":"PP ","pages":""},"PeriodicalIF":3.0,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142619305","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
LSMD: Long-Short Memory-Based Detection Network for Carotid Artery Detection in B-mode Ultrasound Video Streams. LSMD:基于长短记忆的检测网络,用于 B 型超声视频流中的颈动脉检测。
IF 3 2区 工程技术 Q1 ACOUSTICS Pub Date : 2024-11-08 DOI: 10.1109/TUFFC.2024.3494019
Chunjie Shan, Yidan Zhang, Chunrui Liu, Zhibin Jin, Hanlin Cheng, Yidi Chen, Jing Yao, Shouhua Luo

Carotid atherosclerotic plaques are a major complication associated with type II diabetes, and carotid ultrasound is commonly used for diagnosing carotid vascular disease. In primary hospitals, less experienced ultrasound physicians often struggle to consistently capture standard carotid images and identify plaques. To address this issue, we propose a novel approach, the long-short memory-based detection network (LSMD), for carotid artery detection in ultrasound video streams, facilitating the identification and localization of critical anatomical structures and plaques. This approach models short- and long-distance spatiotemporal features through Short-term Temporal Aggregation (STA) and Long-term Temporal Aggregation (LTA) modules, effectively expanding the temporal receptive field with minimal delay and enhancing the detection efficiency of carotid anatomy and plaques. Specifically, we introduce memory buffers with a dynamic updating strategy to ensure extensive temporal receptive field coverage while minimizing memory and computation costs. The proposed model was trained on 80 carotid ultrasound videos and evaluated on 50, with all videos annotated by physicians for carotid anatomies and plaques. The trained LSMD was evaluated for performance on the validation and test sets using the single-frame image-based Single Shot Multi-box Detector (SSD) algorithm as a baseline. The results show that the precision, recall, Average Precision at IoU = 0.50 (AP50), and mean Average Precision (mAP) are 6.83%, 12.29%, 11.23%, and 13.21% higher than the baseline (p < 0.001) respectively, while the model's inference latency reaches 6.97ms on a desktop-level GPU (NVIDIA RTX 3090Ti) and 29.69ms on an edge computing device (Jetson Orin Nano). These findings demonstrate that LSMD can accurately localize carotid anatomy and plaques with real-time inference, indicating its potential for enhancing diagnostic accuracy in clinical practice.

颈动脉粥样硬化斑块是 II 型糖尿病的主要并发症,颈动脉超声通常用于诊断颈动脉血管疾病。在基层医院,经验较少的超声医生往往难以持续捕捉标准颈动脉图像并识别斑块。为解决这一问题,我们提出了一种新方法--基于长短记忆的检测网络(LSMD),用于超声视频流中的颈动脉检测,促进关键解剖结构和斑块的识别和定位。这种方法通过短期时空聚合(STA)和长期时空聚合(LTA)模块对短距离和长距离时空特征进行建模,以最小的延迟有效扩展时空感受野,提高颈动脉解剖结构和斑块的检测效率。具体来说,我们引入了具有动态更新策略的内存缓冲区,以确保广泛的时间感受野覆盖,同时最大限度地降低内存和计算成本。我们在 80 个颈动脉超声视频上对所提出的模型进行了训练,并在 50 个视频上进行了评估,所有视频都由医生对颈动脉解剖结构和斑块进行了注释。以基于单帧图像的单枪多箱检测器(SSD)算法为基准,对训练好的 LSMD 在验证集和测试集上的性能进行了评估。结果显示,精确度、召回率、IoU = 0.50时的平均精确度(AP50)和平均平均精确度(mAP)分别比基线高出6.83%、12.29%、11.23%和13.21%(p < 0.001),而模型的推理延迟在桌面级GPU(英伟达RTX 3090Ti)上为6.97ms,在边缘计算设备(Jetson Orin Nano)上为29.69ms。这些研究结果表明,LSMD 可以通过实时推理准确定位颈动脉解剖结构和斑块,显示了其在临床实践中提高诊断准确性的潜力。
{"title":"LSMD: Long-Short Memory-Based Detection Network for Carotid Artery Detection in B-mode Ultrasound Video Streams.","authors":"Chunjie Shan, Yidan Zhang, Chunrui Liu, Zhibin Jin, Hanlin Cheng, Yidi Chen, Jing Yao, Shouhua Luo","doi":"10.1109/TUFFC.2024.3494019","DOIUrl":"https://doi.org/10.1109/TUFFC.2024.3494019","url":null,"abstract":"<p><p>Carotid atherosclerotic plaques are a major complication associated with type II diabetes, and carotid ultrasound is commonly used for diagnosing carotid vascular disease. In primary hospitals, less experienced ultrasound physicians often struggle to consistently capture standard carotid images and identify plaques. To address this issue, we propose a novel approach, the long-short memory-based detection network (LSMD), for carotid artery detection in ultrasound video streams, facilitating the identification and localization of critical anatomical structures and plaques. This approach models short- and long-distance spatiotemporal features through Short-term Temporal Aggregation (STA) and Long-term Temporal Aggregation (LTA) modules, effectively expanding the temporal receptive field with minimal delay and enhancing the detection efficiency of carotid anatomy and plaques. Specifically, we introduce memory buffers with a dynamic updating strategy to ensure extensive temporal receptive field coverage while minimizing memory and computation costs. The proposed model was trained on 80 carotid ultrasound videos and evaluated on 50, with all videos annotated by physicians for carotid anatomies and plaques. The trained LSMD was evaluated for performance on the validation and test sets using the single-frame image-based Single Shot Multi-box Detector (SSD) algorithm as a baseline. The results show that the precision, recall, Average Precision at IoU = 0.50 (AP<sub>50</sub>), and mean Average Precision (mAP) are 6.83%, 12.29%, 11.23%, and 13.21% higher than the baseline (p < 0.001) respectively, while the model's inference latency reaches 6.97ms on a desktop-level GPU (NVIDIA RTX 3090Ti) and 29.69ms on an edge computing device (Jetson Orin Nano). These findings demonstrate that LSMD can accurately localize carotid anatomy and plaques with real-time inference, indicating its potential for enhancing diagnostic accuracy in clinical practice.</p>","PeriodicalId":13322,"journal":{"name":"IEEE transactions on ultrasonics, ferroelectrics, and frequency control","volume":"PP ","pages":""},"PeriodicalIF":3.0,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142604212","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Phantom-Free Approach for Estimating the Backscatter Coefficient of Aggregated Red Blood Cells applied to COVID-19 Patients. 适用于 COVID-19 患者的估算聚集红细胞反向散射系数的无幻影方法。
IF 3 2区 工程技术 Q1 ACOUSTICS Pub Date : 2024-11-07 DOI: 10.1109/TUFFC.2024.3493602
Francois Destrempes, Boris Chayer, Marie-Helene Roy Cardinal, Louise Allard, Hassan Rivaz, Madeleine Durand, William Beaubien-Souligny, Martin Girard, Guy Cloutier

The ultrasound backscatter coefficient is a frequency-dependent quantity intrinsic to biological tissues that can be recovered from backscattered radiofrequency signals, granted acquisitions on a reference phantom are available under the same system's settings. A phantom-free backscatter coefficient estimation method is proposed based on Gaussian-shaped approximation of the point spread function (electronics and piezoelectric characteristics of the scanner's probe) and the effective medium theory combined with the structure factor model, albeit the proposed approach is amenable to other models. Meanwhile, the total attenuation due to intervening tissues is refined from its theoretical value, which is based on reported average behaviors of tissues, while allowing correction for diffraction due to the probe's geometry. The reference phantom method adapted to a similar approach except for the Gaussian approximation is also presented. The proposed phantom-free and reference phantom methods were compared on ten COVID-19 positive patients and twelve control subjects with measures on femoral veins and arteries. In this context, red blood cells are viewed as scatterers that form aggregates increasing the backscatter under the COVID-19 inflammatory condition. The considered model comprises five parameters, including the mean aggregate size estimated according to polydispersity of aggregates' radii, and anisotropy of their shape. The mean aggregate size over the two proposed methods presented an intraclass correlation coefficient of 0.964 for consistency. The aggregate size presented a significant difference between the two groups with either two methods, despite the confounding effect of the maximum Doppler velocity within the blood vessel and its diameter.

超声波后向散射系数是生物组织固有的一个频率依赖量,可从后向散射的射频信号中恢复,前提是在相同的系统设置下对参考模型进行采集。基于点扩散函数的高斯近似(扫描仪探头的电子和压电特性)和有效介质理论与结构因子模型相结合,提出了一种无模型反向散射系数估算方法,但该方法也适用于其他模型。同时,介入组织引起的总衰减将根据理论值进行细化,理论值基于报告的组织平均行为,同时允许对探头几何形状引起的衍射进行校正。除高斯近似值外,参考模型法也采用了类似的方法。对 10 名 COVID-19 阳性患者和 12 名对照组进行了股静脉和动脉测量,比较了所提出的无模型方法和参考模型方法。在这种情况下,红细胞被视为散射体,在 COVID-19 炎症条件下形成聚集体,增加了反向散射。所考虑的模型由五个参数组成,包括根据聚集体半径的多分散性及其形状的各向异性估算的平均聚集体大小。两种建议方法的平均聚集体大小的类内相关系数为 0.964,具有一致性。尽管血管内的最大多普勒速度和血管直径会产生混杂效应,但采用这两种方法得出的聚集体大小在两组之间仍存在显著差异。
{"title":"A Phantom-Free Approach for Estimating the Backscatter Coefficient of Aggregated Red Blood Cells applied to COVID-19 Patients.","authors":"Francois Destrempes, Boris Chayer, Marie-Helene Roy Cardinal, Louise Allard, Hassan Rivaz, Madeleine Durand, William Beaubien-Souligny, Martin Girard, Guy Cloutier","doi":"10.1109/TUFFC.2024.3493602","DOIUrl":"https://doi.org/10.1109/TUFFC.2024.3493602","url":null,"abstract":"<p><p>The ultrasound backscatter coefficient is a frequency-dependent quantity intrinsic to biological tissues that can be recovered from backscattered radiofrequency signals, granted acquisitions on a reference phantom are available under the same system's settings. A phantom-free backscatter coefficient estimation method is proposed based on Gaussian-shaped approximation of the point spread function (electronics and piezoelectric characteristics of the scanner's probe) and the effective medium theory combined with the structure factor model, albeit the proposed approach is amenable to other models. Meanwhile, the total attenuation due to intervening tissues is refined from its theoretical value, which is based on reported average behaviors of tissues, while allowing correction for diffraction due to the probe's geometry. The reference phantom method adapted to a similar approach except for the Gaussian approximation is also presented. The proposed phantom-free and reference phantom methods were compared on ten COVID-19 positive patients and twelve control subjects with measures on femoral veins and arteries. In this context, red blood cells are viewed as scatterers that form aggregates increasing the backscatter under the COVID-19 inflammatory condition. The considered model comprises five parameters, including the mean aggregate size estimated according to polydispersity of aggregates' radii, and anisotropy of their shape. The mean aggregate size over the two proposed methods presented an intraclass correlation coefficient of 0.964 for consistency. The aggregate size presented a significant difference between the two groups with either two methods, despite the confounding effect of the maximum Doppler velocity within the blood vessel and its diameter.</p>","PeriodicalId":13322,"journal":{"name":"IEEE transactions on ultrasonics, ferroelectrics, and frequency control","volume":"PP ","pages":""},"PeriodicalIF":3.0,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142604210","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
High-frequency wearable ultrasound array belt for small animal echocardiography. 用于小动物超声心动图的高频可穿戴式超声阵列腰带。
IF 3 2区 工程技术 Q1 ACOUSTICS Pub Date : 2024-11-06 DOI: 10.1109/TUFFC.2024.3492197
Yushun Zeng, Xin Sun, Junhang Zhang, Chi-Feng Chang, Baoqiang Liu, Chen Gong, Jie Ji, Bryan Zhen Zhang, Yujie Wang, Matthew Xinhu Ren, Robert Wodnicki, Hsiao-Chuan Liu, Qifa Zhou

Wearable ultrasound has been widely developed for long-term, continuous imaging without the need for bulky system manipulation and repeated manual locating. To potentially lead to more accurate and reliable imaging monitoring, this work presents the design, fabrication, and evaluation of a novel high-frequency wearable ultrasound array belt (WUAB) for small animal echocardiography. The fabrication process involved precise dicing technology for a λ-pitch design. The 20 MHz WUAB consists of two matching layers, piezoelectric composite with 128 channels, customized flexible circuit substrate, acoustic backing layer, and customized belt structure with designed end tip and insertion point for wearability. The resulting WUAB demonstrates sensitivity of -5.69 ± 2.5 dB and fractional bandwidth of 57 ± 5 %. In vivo experiments on rat model showed expected echocardiography and B-mode images of rat heart. These results represent significant promise for future longitudinal studies in small animals and real-time physiological monitoring.

可穿戴超声设备已得到广泛开发,可用于长期、连续成像,而无需笨重的系统操作和重复的人工定位。为了实现更精确、更可靠的成像监测,这项工作介绍了一种用于小动物超声心动图的新型高频可穿戴超声阵列带(WUAB)的设计、制造和评估。制造过程采用精确切割技术,以实现 λ 间距设计。20 MHz WUAB 由两个匹配层、128 个通道的压电复合材料、定制的柔性电路基板、声学背层和定制的皮带结构组成,皮带末端和插入点经过设计,具有良好的耐磨性。WUAB 的灵敏度为 -5.69 ± 2.5 dB,分数带宽为 57 ± 5 %。在大鼠模型上进行的体内实验显示,大鼠心脏的超声心动图和 B 型图像达到预期效果。这些结果为今后在小动物中进行纵向研究和实时生理监测带来了巨大希望。
{"title":"High-frequency wearable ultrasound array belt for small animal echocardiography.","authors":"Yushun Zeng, Xin Sun, Junhang Zhang, Chi-Feng Chang, Baoqiang Liu, Chen Gong, Jie Ji, Bryan Zhen Zhang, Yujie Wang, Matthew Xinhu Ren, Robert Wodnicki, Hsiao-Chuan Liu, Qifa Zhou","doi":"10.1109/TUFFC.2024.3492197","DOIUrl":"10.1109/TUFFC.2024.3492197","url":null,"abstract":"<p><p>Wearable ultrasound has been widely developed for long-term, continuous imaging without the need for bulky system manipulation and repeated manual locating. To potentially lead to more accurate and reliable imaging monitoring, this work presents the design, fabrication, and evaluation of a novel high-frequency wearable ultrasound array belt (WUAB) for small animal echocardiography. The fabrication process involved precise dicing technology for a λ-pitch design. The 20 MHz WUAB consists of two matching layers, piezoelectric composite with 128 channels, customized flexible circuit substrate, acoustic backing layer, and customized belt structure with designed end tip and insertion point for wearability. The resulting WUAB demonstrates sensitivity of -5.69 ± 2.5 dB and fractional bandwidth of 57 ± 5 %. In vivo experiments on rat model showed expected echocardiography and B-mode images of rat heart. These results represent significant promise for future longitudinal studies in small animals and real-time physiological monitoring.</p>","PeriodicalId":13322,"journal":{"name":"IEEE transactions on ultrasonics, ferroelectrics, and frequency control","volume":"PP ","pages":""},"PeriodicalIF":3.0,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142590767","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Deep Power-aware Tunable Weighting for Ultrasound Microvascular Imaging. 用于超声微血管成像的深度功率感知可调加权法
IF 3 2区 工程技术 Q1 ACOUSTICS Pub Date : 2024-10-31 DOI: 10.1109/TUFFC.2024.3488729
Hengrong Lan, Lijie Huang, Yadan Wang, Rui Wang, Xingyue Wei, Qiong He, Jianwen Luo

Ultrasound microvascular imaging (UMI), including ultrafast power Doppler imaging (uPDI) and ultrasound localization microscopy (ULM), obtains blood flow information through plane wave transmissions at high frame rates. However, low signal-to-noise ratio of plane waves causes low image quality. Adaptive beamformers have been proposed to suppress noise energy to achieve higher image quality accompanied by increasing computational complexity. Deep learning (DL) leverages powerful hardware capabilities to enable rapid implementation of noise suppression at the cost of flexibility. To enhance the applicability of DL-based methods, in this work, we propose a deep power-aware tunable (DPT) weighting (i.e., postfilter) for delay-and-sum (DAS) beamforming to improve UMI by enhancing plane wave images. The model, called Yformer is a hybrid structure combining convolution and Transformer. With the DAS beamformed and compounded envelope image as input, Yformer can estimate both noise power and signal power. Furthermore, we utilize the obtained powers to compute pixel-wise weights by introducing a tunable noise control factor, which is tailored for improving the quality of different UMI applications. In vivo experiments on the rat brain demonstrate that Yformer can accurately estimate the powers of noise and signal with the structural similarity index (SSIM) higher than 0.95. The performance of the DPT weighting is comparable to that of superior adaptive beamformer in uPDI with low computational cost. The DPT weighting was then applied to four different datasets of ULM, including public simulation, public rat brain, private rat brain, and private rat liver datasets, showing excellent generalizability using the model trained by the private rat brain dataset only. In particular, our method indirectly improves the resolution of liver ULM from 25.24 μm to 18.77 μm by highlighting small vessels. In addition, the DPT weighting exhibits more details of blood vessels with faster processing, which has the potential to facilitate the clinical applications of high-quality UMI.

超声微血管成像(UMI),包括超快功率多普勒成像(uPDI)和超声定位显微成像(ULM),通过高帧率的平面波传输获取血流信息。然而,平面波信噪比低,导致图像质量不高。人们提出了自适应波束成形器来抑制噪声能量,以获得更高的图像质量,但同时也增加了计算复杂度。深度学习(DL)利用强大的硬件能力,以灵活性为代价,快速实现噪声抑制。为了提高基于深度学习的方法的适用性,在这项工作中,我们提出了一种深度功率感知可调(DPT)加权(即后滤波器),用于延迟和(DAS)波束成形,通过增强平面波图像来改善 UMI。该模型被称为 Yformer,是一种结合了卷积和变换器的混合结构。以 DAS 波束成形和复合包络图像为输入,Yformer 可以估计噪声功率和信号功率。此外,我们还利用所获得的功率,通过引入可调噪声控制因子来计算像素权重,从而提高不同 UMI 应用的质量。大鼠大脑的活体实验证明,Yformer 可以准确估计噪声和信号的功率,其结构相似性指数(SSIM)高于 0.95。DPT 加权的性能可与 uPDI 中出色的自适应波束成形器相媲美,且计算成本较低。然后,将 DPT 加权法应用于四个不同的 ULM 数据集,包括公共模拟、公共大鼠大脑、私人大鼠大脑和私人大鼠肝脏数据集。特别是,我们的方法通过突出显示小血管,间接提高了肝脏 ULM 的分辨率,从 25.24 μm 降至 18.77 μm。此外,DPT 加权能以更快的处理速度显示出更多的血管细节,这有可能促进高质量 UMI 的临床应用。
{"title":"Deep Power-aware Tunable Weighting for Ultrasound Microvascular Imaging.","authors":"Hengrong Lan, Lijie Huang, Yadan Wang, Rui Wang, Xingyue Wei, Qiong He, Jianwen Luo","doi":"10.1109/TUFFC.2024.3488729","DOIUrl":"10.1109/TUFFC.2024.3488729","url":null,"abstract":"<p><p>Ultrasound microvascular imaging (UMI), including ultrafast power Doppler imaging (uPDI) and ultrasound localization microscopy (ULM), obtains blood flow information through plane wave transmissions at high frame rates. However, low signal-to-noise ratio of plane waves causes low image quality. Adaptive beamformers have been proposed to suppress noise energy to achieve higher image quality accompanied by increasing computational complexity. Deep learning (DL) leverages powerful hardware capabilities to enable rapid implementation of noise suppression at the cost of flexibility. To enhance the applicability of DL-based methods, in this work, we propose a deep power-aware tunable (DPT) weighting (i.e., postfilter) for delay-and-sum (DAS) beamforming to improve UMI by enhancing plane wave images. The model, called Yformer is a hybrid structure combining convolution and Transformer. With the DAS beamformed and compounded envelope image as input, Yformer can estimate both noise power and signal power. Furthermore, we utilize the obtained powers to compute pixel-wise weights by introducing a tunable noise control factor, which is tailored for improving the quality of different UMI applications. In vivo experiments on the rat brain demonstrate that Yformer can accurately estimate the powers of noise and signal with the structural similarity index (SSIM) higher than 0.95. The performance of the DPT weighting is comparable to that of superior adaptive beamformer in uPDI with low computational cost. The DPT weighting was then applied to four different datasets of ULM, including public simulation, public rat brain, private rat brain, and private rat liver datasets, showing excellent generalizability using the model trained by the private rat brain dataset only. In particular, our method indirectly improves the resolution of liver ULM from 25.24 μm to 18.77 μm by highlighting small vessels. In addition, the DPT weighting exhibits more details of blood vessels with faster processing, which has the potential to facilitate the clinical applications of high-quality UMI.</p>","PeriodicalId":13322,"journal":{"name":"IEEE transactions on ultrasonics, ferroelectrics, and frequency control","volume":"PP ","pages":""},"PeriodicalIF":3.0,"publicationDate":"2024-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142557736","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Optically-Validated Microvascular Phantom for Super-Resolution Ultrasound Imaging. 用于超分辨率超声成像的光学验证微血管模型
IF 3 2区 工程技术 Q1 ACOUSTICS Pub Date : 2024-10-30 DOI: 10.1109/TUFFC.2024.3484770
Jaime Parra Raad, Daniel Lock, Yi-Yi Liu, Mark Solomon, Laura Peralta, Kirsten Christensen-Jeffries

Super-resolution ultrasound (SRUS) visu-Microvascular Phantom alises microvasculature beyond the ultrasound diffraction limit (wavelength (λ)/2) by localising and tracking spatially isolated microbubble contrast agents. SRUS phantoms typically consist of simple tube structures, where diameter channels below 100 μm are not available. Furthermore, these phantoms are generally fragile and unstable, have limited ground truth validation, and their simple structure limits the evaluation of SRUS algorithms. To aid SRUS development, robust and durable phantoms with known and physiologically relevant microvasculature are needed for repeatable SRUS testing. This work proposes a method to fabricate durable microvascular phantoms that allow optical gauging for SRUS validation. The methodology used a microvasculature negative print embedded in a Polydimethylsiloxane to fabricate a microvascular phantom. Branching microvascular phantoms with variable microvascular density were demonstrated with optically validated vessel diameters down to ~60 μm(λ/5.8; λ=~350 μm ). SRUS imaging was performed and validated with optical measurements. The average SRUS error was 15.61 μm(λ/22) with a standard deviation error of 11.44 μm. The average error decreased to 7.93 μm(λ/44) once the number of localised microbubbles surpassed 1000 per estimated diameter. In addition, the less than 10% variance of acoustic and optical properties and the mechanical toughness of the phantoms measured a year after fabrication demonstrated their long-term durability. This work presents a method to fabricate durable and optically validated complex microvascular phantoms which can be used to quantify SRUS performance and facilitate its further development.

超分辨超声(SRUS)通过定位和跟踪空间隔离的微泡造影剂,在超声衍射极限(波长(λ)/2)之外观察微血管。SRUS 模型通常由简单的管状结构组成,直径低于 100 μm 的通道不可用。此外,这些模型通常比较脆弱和不稳定,地面实况验证有限,其简单的结构也限制了对 SRUS 算法的评估。为了帮助 SRUS 的开发,需要具有已知生理相关微血管的坚固耐用的模型来进行可重复的 SRUS 测试。这项研究提出了一种制作耐用微血管模型的方法,这种模型可用于 SRUS 验证的光学测量。该方法使用嵌入聚二甲基硅氧烷的微血管负印模来制作微血管模型。具有不同微血管密度的分支微血管模型经过光学验证,血管直径小至 ~60 μm(λ/5.8;λ= ~350 μm)。进行了 SRUS 成像,并通过光学测量进行了验证。SRUS 平均误差为 15.61 μm(λ/22),标准偏差误差为 11.44 μm。当每个估计直径的局部微气泡数量超过 1000 个时,平均误差降至 7.93 μm(λ/44)。此外,制作一年后测量的声学和光学特性差异小于 10%,以及模型的机械韧性都证明了其长期耐用性。这项研究提出了一种制作耐用且经过光学验证的复杂微血管模型的方法,可用于量化 SRUS 性能并促进其进一步发展。
{"title":"Optically-Validated Microvascular Phantom for Super-Resolution Ultrasound Imaging.","authors":"Jaime Parra Raad, Daniel Lock, Yi-Yi Liu, Mark Solomon, Laura Peralta, Kirsten Christensen-Jeffries","doi":"10.1109/TUFFC.2024.3484770","DOIUrl":"https://doi.org/10.1109/TUFFC.2024.3484770","url":null,"abstract":"<p><p>Super-resolution ultrasound (SRUS) visu-Microvascular Phantom alises microvasculature beyond the ultrasound diffraction limit (wavelength (λ)/2) by localising and tracking spatially isolated microbubble contrast agents. SRUS phantoms typically consist of simple tube structures, where diameter channels below 100 μm are not available. Furthermore, these phantoms are generally fragile and unstable, have limited ground truth validation, and their simple structure limits the evaluation of SRUS algorithms. To aid SRUS development, robust and durable phantoms with known and physiologically relevant microvasculature are needed for repeatable SRUS testing. This work proposes a method to fabricate durable microvascular phantoms that allow optical gauging for SRUS validation. The methodology used a microvasculature negative print embedded in a Polydimethylsiloxane to fabricate a microvascular phantom. Branching microvascular phantoms with variable microvascular density were demonstrated with optically validated vessel diameters down to ~60 μm(λ/5.8; λ=~350 μm ). SRUS imaging was performed and validated with optical measurements. The average SRUS error was 15.61 μm(λ/22) with a standard deviation error of 11.44 μm. The average error decreased to 7.93 μm(λ/44) once the number of localised microbubbles surpassed 1000 per estimated diameter. In addition, the less than 10% variance of acoustic and optical properties and the mechanical toughness of the phantoms measured a year after fabrication demonstrated their long-term durability. This work presents a method to fabricate durable and optically validated complex microvascular phantoms which can be used to quantify SRUS performance and facilitate its further development.</p>","PeriodicalId":13322,"journal":{"name":"IEEE transactions on ultrasonics, ferroelectrics, and frequency control","volume":"PP ","pages":""},"PeriodicalIF":3.0,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142545196","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Improved limited view ultrasound tomography via machine learning. 通过机器学习改进有限视角超声断层成像。
IF 3 2区 工程技术 Q1 ACOUSTICS Pub Date : 2024-10-25 DOI: 10.1109/TUFFC.2024.3486668
Mikolaj Mroszczak, Stefano Mariani, Peter Huthwaite

Tomographic reconstruction is used extensively in medicine, non-destructive testing and geology. In an ideal situation where measurements are taken at all angles around an object, known as full view configuration, a full reconstruction of the object can be produced. One of the major issues faced in tomographic imaging is when measurements cannot be taken freely around the object under inspection. This may be caused by the size and geometry of the object or difficulty accessing from particular directions. The resulting limited view transducer configuration leads to a large deterioration in image quality, thus it is very beneficial to employ a compensation algorithm. At present, the most effective compensation algorithms require a large amount of computing power or a bespoke case-by case approach, often with numerous arbitrary constants which must be tuned for a specific application. This work proposes a machine learning based approach to perform the limited view compensation. The model is based around an autoencoder architecture. It is trained on an artificial dataset, taking advantage of the ability to generate arbitrary limited view images given a full view input. The approach is evaluated on ten laser-scanned corrosion maps and the results compared to positivity regularisation - a limited view compensation algorithm similar in the speed of execution and generalisation potential. The algorithms are compared for root mean squared error (RMSE) across the image, and maximum absolute error (MAE). Furthermore, they are visually compared for subjective quality. Compared to the conventional algorithm, the ML-based approach improves on the MAE in eight out of the ten cases. The conventional approach performs better on mean RMSE, which is explained by the ML outputting inaccurate background level, which is not a critical ability. Most importantly, the visual inspection of outputs shows the ML approach reconstructs the images better, especially in the case of irregular corrosion patches. Compared to limited view images, the ML method improves both the RMSE and MAE by 41%.

断层摄影重建被广泛应用于医学、无损检测和地质学领域。在理想情况下,从物体周围的所有角度进行测量(即全视图配置),就能得到物体的完整重建图。层析成像面临的一个主要问题是无法围绕被检测物体自由进行测量。造成这种情况的原因可能是物体的尺寸和几何形状,也可能是难以从特定方向进行测量。由此产生的有限视角传感器配置会导致图像质量大幅下降,因此采用补偿算法是非常有益的。目前,最有效的补偿算法需要大量的计算能力或定制的个案方法,通常需要针对特定应用调整大量任意常数。这项工作提出了一种基于机器学习的方法来执行有限视角补偿。该模型基于自动编码器架构。它在人工数据集上进行训练,利用了在全视角输入的情况下生成任意有限视角图像的能力。该方法在十张激光扫描腐蚀图上进行了评估,并将评估结果与正则化进行了比较,正则化是一种有限视图补偿算法,在执行速度和泛化潜力方面与有限视图补偿算法相似。比较了两种算法在整个图像上的均方根误差 (RMSE) 和最大绝对误差 (MAE)。此外,还对它们的主观质量进行了直观比较。与传统算法相比,基于 ML 的方法在十种情况中有八种的 MAE 有所改进。传统方法在平均均方根误差(RMSE)方面表现更好,这是因为 ML 输出的背景水平不准确,而这并不是关键能力。最重要的是,对输出结果的目测表明,ML 方法能更好地重建图像,尤其是在不规则腐蚀斑块的情况下。与有限视角图像相比,ML 方法的 RMSE 和 MAE 均提高了 41%。
{"title":"Improved limited view ultrasound tomography via machine learning.","authors":"Mikolaj Mroszczak, Stefano Mariani, Peter Huthwaite","doi":"10.1109/TUFFC.2024.3486668","DOIUrl":"https://doi.org/10.1109/TUFFC.2024.3486668","url":null,"abstract":"<p><p>Tomographic reconstruction is used extensively in medicine, non-destructive testing and geology. In an ideal situation where measurements are taken at all angles around an object, known as full view configuration, a full reconstruction of the object can be produced. One of the major issues faced in tomographic imaging is when measurements cannot be taken freely around the object under inspection. This may be caused by the size and geometry of the object or difficulty accessing from particular directions. The resulting limited view transducer configuration leads to a large deterioration in image quality, thus it is very beneficial to employ a compensation algorithm. At present, the most effective compensation algorithms require a large amount of computing power or a bespoke case-by case approach, often with numerous arbitrary constants which must be tuned for a specific application. This work proposes a machine learning based approach to perform the limited view compensation. The model is based around an autoencoder architecture. It is trained on an artificial dataset, taking advantage of the ability to generate arbitrary limited view images given a full view input. The approach is evaluated on ten laser-scanned corrosion maps and the results compared to positivity regularisation - a limited view compensation algorithm similar in the speed of execution and generalisation potential. The algorithms are compared for root mean squared error (RMSE) across the image, and maximum absolute error (MAE). Furthermore, they are visually compared for subjective quality. Compared to the conventional algorithm, the ML-based approach improves on the MAE in eight out of the ten cases. The conventional approach performs better on mean RMSE, which is explained by the ML outputting inaccurate background level, which is not a critical ability. Most importantly, the visual inspection of outputs shows the ML approach reconstructs the images better, especially in the case of irregular corrosion patches. Compared to limited view images, the ML method improves both the RMSE and MAE by 41%.</p>","PeriodicalId":13322,"journal":{"name":"IEEE transactions on ultrasonics, ferroelectrics, and frequency control","volume":"PP ","pages":""},"PeriodicalIF":3.0,"publicationDate":"2024-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142499385","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Volumetric Ultrasound Localization Microscopy. 容积超声定位显微镜。
IF 3 2区 工程技术 Q1 ACOUSTICS Pub Date : 2024-10-25 DOI: 10.1109/TUFFC.2024.3485556
Louise Denis, Georges Chabouh, Baptiste Heiles, Olivier Couture

Super-resolution ultrasound (SRUS) has evolved significantly with the advent of Ultrasound Localization Microscopy (ULM). This technique enables sub-wavelength resolution imaging using microbubble contrast agents. Initially confined to 2D imaging, ULM has progressed towards volumetric approaches, allowing for comprehensive three-dimensional visualization of microvascular networks. This review explores the technological advancements and challenges associated with volumetric ULM, focusing on key aspects such as transducer design, acquisition speed, data processing algorithms, or integration into clinical practice. We discuss the limitations of traditional 2D ULM, including dependency on precise imaging plane selection and compromised resolution in microvasculature quantification. In contrast, volumetric ULM offers enhanced spatial resolution and allowed motion correction in all direction, promising transformative insights into microvascular pathophysiology. By examining current research and future directions, this review highlights the potential of volumetric ULM to contribute significantly to diagnostic across various medical conditions, including cancers, arteriosclerosis, strokes, diabetes, and neurodegenerative diseases.

随着超声定位显微镜(ULM)的出现,超分辨率超声(SRUS)得到了长足的发展。这项技术利用微气泡造影剂实现了亚波长分辨率成像。ULM 最初仅限于二维成像,现在已发展为容积成像方法,可实现微血管网络的全面三维可视化。本综述探讨了与容积超短波成像相关的技术进步和挑战,重点关注换能器设计、采集速度、数据处理算法或与临床实践的结合等关键方面。我们讨论了传统二维超低功耗成像技术的局限性,包括对精确成像平面选择的依赖性和微血管量化分辨率的影响。相比之下,容积式超短波成像可提供更高的空间分辨率,并允许在所有方向上进行运动校正,有望为微血管病理生理学提供变革性的见解。通过研究当前的研究和未来的发展方向,这篇综述强调了容积超短波成像技术在各种疾病诊断方面的潜力,包括癌症、动脉硬化、中风、糖尿病和神经退行性疾病。
{"title":"Volumetric Ultrasound Localization Microscopy.","authors":"Louise Denis, Georges Chabouh, Baptiste Heiles, Olivier Couture","doi":"10.1109/TUFFC.2024.3485556","DOIUrl":"https://doi.org/10.1109/TUFFC.2024.3485556","url":null,"abstract":"<p><p>Super-resolution ultrasound (SRUS) has evolved significantly with the advent of Ultrasound Localization Microscopy (ULM). This technique enables sub-wavelength resolution imaging using microbubble contrast agents. Initially confined to 2D imaging, ULM has progressed towards volumetric approaches, allowing for comprehensive three-dimensional visualization of microvascular networks. This review explores the technological advancements and challenges associated with volumetric ULM, focusing on key aspects such as transducer design, acquisition speed, data processing algorithms, or integration into clinical practice. We discuss the limitations of traditional 2D ULM, including dependency on precise imaging plane selection and compromised resolution in microvasculature quantification. In contrast, volumetric ULM offers enhanced spatial resolution and allowed motion correction in all direction, promising transformative insights into microvascular pathophysiology. By examining current research and future directions, this review highlights the potential of volumetric ULM to contribute significantly to diagnostic across various medical conditions, including cancers, arteriosclerosis, strokes, diabetes, and neurodegenerative diseases.</p>","PeriodicalId":13322,"journal":{"name":"IEEE transactions on ultrasonics, ferroelectrics, and frequency control","volume":"PP ","pages":""},"PeriodicalIF":3.0,"publicationDate":"2024-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142499469","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Design and Analysis of Guided Surface Acoustic Waves in ScAlN on Sapphire for Phononic Integrated Circuits. 在蓝宝石上的 ScAlN 中设计和分析用于语音集成电路的引导表面声波。
IF 3 2区 工程技术 Q1 ACOUSTICS Pub Date : 2024-10-21 DOI: 10.1109/TUFFC.2024.3484181
Jack Guida, Siddhartha Ghosh

This study presents a comprehensive dispersion analysis and characterization of guided surface acoustic waves (SAWs) in 30% scandium aluminum nitride (ScAlN) alloy thin films on sapphire (SoS). The solidly mounted platform, which supports the fundamental Rayleigh and Sezawa SAW modes, offers mechanical robustness and high electromechanical coupling (k2t), while maintaining high confinement of the acoustic modes. Numerical modeling, coupled with experimental results, showcases the characteristics of focusing interdigitated transducers (FIDTs) for injecting acoustic energy into piezoelectric etch-defined acoustic waveguides and highlights their advantages over conventional uniform aperture transducers. Identity mapping of boundary conditions significantly reduces degrees of freedom in modeling energy injection into acoustic waveguides. The theory of Gaussian beams in optics is applied to the FIDTs to model the physical response of the transducers accurately and emphasize their high-intensity focusing nature. This work also demonstrates the ability of FIDTs to facilitate phononic devices and phononic integrated circuit applications in slow-on-fast piezoelectric platforms.

本研究对蓝宝石(SoS)上的 30% 氮化钪铝(ScAlN)合金薄膜中的引导表面声波(SAW)进行了全面的频散分析和表征。稳固安装的平台支持基本的瑞利(Rayleigh)和塞泽(Sezawa)声表面波模式,具有机械坚固性和高机电耦合(k2t),同时保持了声学模式的高度约束。数值建模与实验结果相结合,展示了用于将声能注入压电蚀刻定义声波导管的聚焦互斥换能器(FIDT)的特性,并突出了其与传统均匀孔径换能器相比的优势。边界条件的特性映射大大降低了声波导内能量注入建模的自由度。光学中的高斯光束理论被应用于 FIDT,以准确模拟换能器的物理响应,并强调其高强度聚焦特性。这项研究还证明了 FIDT 能够促进声波器件和声波集成电路在慢-快压电平台中的应用。
{"title":"Design and Analysis of Guided Surface Acoustic Waves in ScAlN on Sapphire for Phononic Integrated Circuits.","authors":"Jack Guida, Siddhartha Ghosh","doi":"10.1109/TUFFC.2024.3484181","DOIUrl":"https://doi.org/10.1109/TUFFC.2024.3484181","url":null,"abstract":"<p><p>This study presents a comprehensive dispersion analysis and characterization of guided surface acoustic waves (SAWs) in 30% scandium aluminum nitride (ScAlN) alloy thin films on sapphire (SoS). The solidly mounted platform, which supports the fundamental Rayleigh and Sezawa SAW modes, offers mechanical robustness and high electromechanical coupling (k<sup>2</sup><sub>t</sub>), while maintaining high confinement of the acoustic modes. Numerical modeling, coupled with experimental results, showcases the characteristics of focusing interdigitated transducers (FIDTs) for injecting acoustic energy into piezoelectric etch-defined acoustic waveguides and highlights their advantages over conventional uniform aperture transducers. Identity mapping of boundary conditions significantly reduces degrees of freedom in modeling energy injection into acoustic waveguides. The theory of Gaussian beams in optics is applied to the FIDTs to model the physical response of the transducers accurately and emphasize their high-intensity focusing nature. This work also demonstrates the ability of FIDTs to facilitate phononic devices and phononic integrated circuit applications in slow-on-fast piezoelectric platforms.</p>","PeriodicalId":13322,"journal":{"name":"IEEE transactions on ultrasonics, ferroelectrics, and frequency control","volume":"PP ","pages":""},"PeriodicalIF":3.0,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142499384","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Influence of Image Discretization and Patch Size on Microbubble Localization Precision. 图像离散化和斑块大小对微气泡定位精度的影响
IF 3 2区 工程技术 Q1 ACOUSTICS Pub Date : 2024-10-14 DOI: 10.1109/TUFFC.2024.3479710
Julia Sobolewski, Stefanie Dencks, Georg Schmitz

For ultrasound localization microscopy, the localization of microbubbles (MBs) is an essential part to obtain super-resolved maps of the vasculature. This paper analyzes the impact of image discretization and patch size on the precision of different MB localization methods to reconcile different observations from previous studies, provide an estimate of feasible localization precision, and derive guidelines for an optimal parameter selection. For this purpose, images of MBs were simulated with Gaussian point-spread functions (PSF) of varying width parameter σ at randomly generated subpixel positions, and Rician distributed noise was added. Four localization methods were tested on patches of different sizes (number of pixels N × N): Gaussian fit, radial symmetry method, calculation of center of mass, and peak detection. Additionally, the Cramér-Rao lower bound (CRLB) for the given estimation problem was calculated. Our results show that the localization precision is strongly influenced by the ratio of the PSF width parameter σ to the pixel size Δ, as well as the patch size N. The best parameter combination depends on the localization method. Generally, very small σ/Δ ratios as well as large σ/Δ ratios in combination with small N lead to performance degradation. The Gaussian fit as representative of a model-based fit comes close to the CRLB and always performs best for the σ/Δ ratios given by image discretization if N is adapted to the PSF. To achieve good results with the Gaussian fit and the radial symmetry method, a good rule of thumb is to set the pixel sizes Δ ≤ σ/0.6 and the patch sizes N ≥ 2σ/Δ + 3.

对于超声定位显微镜来说,微气泡(MB)的定位是获得血管超分辨图的重要部分。本文分析了图像离散化和斑块大小对不同微泡定位方法精确度的影响,以调和以往研究的不同观察结果,提供可行的定位精确度估算,并得出最佳参数选择指南。为此,用随机生成的子像素位置上宽度参数σ不等的高斯点扩散函数(PSF)模拟 MB 图像,并添加里氏分布噪声。在不同大小(像素数 N × N)的斑块上测试了四种定位方法:高斯拟合法、径向对称法、质量中心计算法和峰值检测法。此外,还计算了给定估计问题的克拉梅尔-拉奥下限(CRLB)。我们的结果表明,PSF 宽度参数 σ 与像素尺寸 Δ 的比率以及补丁尺寸 N 对定位精度有很大影响。一般来说,非常小的σ/Δ 比值以及大的σ/Δ 比值与小的 N 相结合会导致性能下降。作为基于模型拟合的代表,高斯拟合接近于 CRLB,如果 N 与 PSF 相适应,对于图像离散化给出的 σ/Δ 比,高斯拟合总是表现最佳。要使用高斯拟合和径向对称法取得良好效果,一个好的经验法则是设置像素大小 Δ ≤ σ/0.6,补丁大小 N ≥ 2σ/Δ + 3。
{"title":"Influence of Image Discretization and Patch Size on Microbubble Localization Precision.","authors":"Julia Sobolewski, Stefanie Dencks, Georg Schmitz","doi":"10.1109/TUFFC.2024.3479710","DOIUrl":"https://doi.org/10.1109/TUFFC.2024.3479710","url":null,"abstract":"<p><p>For ultrasound localization microscopy, the localization of microbubbles (MBs) is an essential part to obtain super-resolved maps of the vasculature. This paper analyzes the impact of image discretization and patch size on the precision of different MB localization methods to reconcile different observations from previous studies, provide an estimate of feasible localization precision, and derive guidelines for an optimal parameter selection. For this purpose, images of MBs were simulated with Gaussian point-spread functions (PSF) of varying width parameter σ at randomly generated subpixel positions, and Rician distributed noise was added. Four localization methods were tested on patches of different sizes (number of pixels N × N): Gaussian fit, radial symmetry method, calculation of center of mass, and peak detection. Additionally, the Cramér-Rao lower bound (CRLB) for the given estimation problem was calculated. Our results show that the localization precision is strongly influenced by the ratio of the PSF width parameter σ to the pixel size Δ, as well as the patch size N. The best parameter combination depends on the localization method. Generally, very small σ/Δ ratios as well as large σ/Δ ratios in combination with small N lead to performance degradation. The Gaussian fit as representative of a model-based fit comes close to the CRLB and always performs best for the σ/Δ ratios given by image discretization if N is adapted to the PSF. To achieve good results with the Gaussian fit and the radial symmetry method, a good rule of thumb is to set the pixel sizes Δ ≤ σ/0.6 and the patch sizes N ≥ 2σ/Δ + 3.</p>","PeriodicalId":13322,"journal":{"name":"IEEE transactions on ultrasonics, ferroelectrics, and frequency control","volume":"PP ","pages":""},"PeriodicalIF":3.0,"publicationDate":"2024-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142464218","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
IEEE transactions on ultrasonics, ferroelectrics, and frequency control
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1