Pub Date : 2025-01-08DOI: 10.1109/TUFFC.2024.3520761
{"title":"IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control Publication Information","authors":"","doi":"10.1109/TUFFC.2024.3520761","DOIUrl":"https://doi.org/10.1109/TUFFC.2024.3520761","url":null,"abstract":"","PeriodicalId":13322,"journal":{"name":"IEEE transactions on ultrasonics, ferroelectrics, and frequency control","volume":"71 12: Breaking the Resolution Barrier in Ultrasound","pages":"C2-C2"},"PeriodicalIF":3.0,"publicationDate":"2025-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10834409","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142938170","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-11DOI: 10.1109/TUFFC.2024.3515218
Sajjad Afrakhteh;Giulia Tuccio;Libertario Demi
Ultrasound localization microscopy (ULM) has become a potent technique for microvascular imaging using ultrasound waves. However, one major challenge is the high frame rate and lengthy acquisition time needed to produce super-resolved (SR) images. To overcome this, our goal is to relax the frame rate and shorten this acquisition time while preserving SR image quality, thereby enhancing ULM’s clinical applicability. To this end, we propose two distinct strategies: first, we suggest acquiring the data at lower frame rate followed by applying the reconstruction technique to compensate the lost information due to low frame rate imaging. Second, to tackle the prolonged acquisition time, we propose compressing acquisition time by a compression ratio (CR), which can degrade SR image quality due to reduced temporal information. To mitigate this, we temporally upsample the in-phase-quadrature (IQ) data by a factor equal to the CR after compressed acquisition. In addition, we introduce a novel bidirectional (2x2D) interpolation (IP) using radial basis function (RBF)-based reconstruction to estimate unknown values in the 3D IQ data (x–z–t), thereby enhancing temporal resolution. The rationale behind using 2x2D IP is its ability to integrate spatiotemporal information from two orthogonal x–t and z–t planes, effectively addressing anisotropies and nonuniformities in microbubble motion. This 2x2D approach improves the reconstruction of microbubbles’ dynamics by interpolating along both the x- and z-directions. The method was tested on rat brain and rat kidney datasets recorded at 1 kHz, demonstrating relaxing the frame rate to 100 Hz (using the first strategy) and a reduction in acquisition time by a factor of 3 to 4 (using the second strategy) while maintaining SR image quality comparable to the original uncompressed data, including density and velocity maps.
{"title":"A Novel 2x2D Radial Basis Function-Based Interpolation for Short Acquisition Time and Relaxed Frame Rate Ultrasound Localization Microscopy","authors":"Sajjad Afrakhteh;Giulia Tuccio;Libertario Demi","doi":"10.1109/TUFFC.2024.3515218","DOIUrl":"https://doi.org/10.1109/TUFFC.2024.3515218","url":null,"abstract":"Ultrasound localization microscopy (ULM) has become a potent technique for microvascular imaging using ultrasound waves. However, one major challenge is the high frame rate and lengthy acquisition time needed to produce super-resolved (SR) images. To overcome this, our goal is to relax the frame rate and shorten this acquisition time while preserving SR image quality, thereby enhancing ULM’s clinical applicability. To this end, we propose two distinct strategies: first, we suggest acquiring the data at lower frame rate followed by applying the reconstruction technique to compensate the lost information due to low frame rate imaging. Second, to tackle the prolonged acquisition time, we propose compressing acquisition time by a compression ratio (CR), which can degrade SR image quality due to reduced temporal information. To mitigate this, we temporally upsample the in-phase-quadrature (IQ) data by a factor equal to the CR after compressed acquisition. In addition, we introduce a novel bidirectional (2x2D) interpolation (IP) using radial basis function (RBF)-based reconstruction to estimate unknown values in the 3D IQ data (x–z–t), thereby enhancing temporal resolution. The rationale behind using 2x2D IP is its ability to integrate spatiotemporal information from two orthogonal x–t and z–t planes, effectively addressing anisotropies and nonuniformities in microbubble motion. This 2x2D approach improves the reconstruction of microbubbles’ dynamics by interpolating along both the x- and z-directions. The method was tested on rat brain and rat kidney datasets recorded at 1 kHz, demonstrating relaxing the frame rate to 100 Hz (using the first strategy) and a reduction in acquisition time by a factor of 3 to 4 (using the second strategy) while maintaining SR image quality comparable to the original uncompressed data, including density and velocity maps.","PeriodicalId":13322,"journal":{"name":"IEEE transactions on ultrasonics, ferroelectrics, and frequency control","volume":"71 12: Breaking the Resolution Barrier in Ultrasound","pages":"1855-1867"},"PeriodicalIF":3.0,"publicationDate":"2024-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10793238","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142938380","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-27DOI: 10.1109/TUFFC.2024.3499555
{"title":"IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control Publication Information","authors":"","doi":"10.1109/TUFFC.2024.3499555","DOIUrl":"https://doi.org/10.1109/TUFFC.2024.3499555","url":null,"abstract":"","PeriodicalId":13322,"journal":{"name":"IEEE transactions on ultrasonics, ferroelectrics, and frequency control","volume":"71 11","pages":"C2-C2"},"PeriodicalIF":3.0,"publicationDate":"2024-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10770107","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142736595","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Angiogenesis—the formation of new blood vessels from pre-existing ones—is one of the hallmarks of cancer, regardless of subtype. However, the development of a specific tumor type is a highly heterogeneous process that influences the morphology of the tumor vasculature, which has a direct impact on the malignancy and invasiveness of the lesions. Therefore, the analysis of tumor vascularity without the need for invasive procedures is of fundamental interest for the classification of tumor tissue and the monitoring of therapies. Ultrasound localization microscopy (ULM) is a promising new technique that breaks the resolution limits of conventional ultrasound (US) imaging and allows to detect vascular structures and blood flow down to the capillary level. In this article, we discuss this emerging technique in the context of cancer imaging, focusing on crucial implementation aspects as well as on initial basic research in preclinical and clinical settings.
{"title":"Ultrasound Localization Microscopy for Cancer Imaging","authors":"Céline Porte;Stefanie Dencks;Matthias Kohlen;Zuzanna Magnuska;Thomas Lisson;Anne Rix;Elmar Stickeler;Georg Schmitz;Fabian Kiessling","doi":"10.1109/TUFFC.2024.3508266","DOIUrl":"https://doi.org/10.1109/TUFFC.2024.3508266","url":null,"abstract":"Angiogenesis—the formation of new blood vessels from pre-existing ones—is one of the hallmarks of cancer, regardless of subtype. However, the development of a specific tumor type is a highly heterogeneous process that influences the morphology of the tumor vasculature, which has a direct impact on the malignancy and invasiveness of the lesions. Therefore, the analysis of tumor vascularity without the need for invasive procedures is of fundamental interest for the classification of tumor tissue and the monitoring of therapies. Ultrasound localization microscopy (ULM) is a promising new technique that breaks the resolution limits of conventional ultrasound (US) imaging and allows to detect vascular structures and blood flow down to the capillary level. In this article, we discuss this emerging technique in the context of cancer imaging, focusing on crucial implementation aspects as well as on initial basic research in preclinical and clinical settings.","PeriodicalId":13322,"journal":{"name":"IEEE transactions on ultrasonics, ferroelectrics, and frequency control","volume":"71 12: Breaking the Resolution Barrier in Ultrasound","pages":"1785-1800"},"PeriodicalIF":3.0,"publicationDate":"2024-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142938038","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-12DOI: 10.1109/TUFFC.2024.3496474
Sergei Vostrikov, Josquin Tille, Luca Benini, Andrea Cossettini
The need for continuous monitoring of cardiorespiratory activity, blood pressure, bladder, muscle motion analysis, and more, is pushing for research and development of wearable ultrasound devices. In this context, there is a critical need for highly configurable, energy-efficient wearable ultrasound systems with wireless access to raw data and long battery life. Previous exploratory works have primarily relied on bulky commercial research systems or custom-built prototypes with limited and narrowly-focused field applicability. This paper presents TINYPROBE, a novel multi-modal wearable ultrasound platform. TINYPROBE integrates a 32-channel ultrasound RX/TX frontend, including TX beamforming (64 Vpp excitations, 16 delay profiles) and analog-to-digital conversion (up to 30 Msps, 10 bit), with a WiFi link (21.6 Mbps, UDP), for wireless raw data access, all in a compact (57 × 35 × 20 mm) and lightweight (35 g) design. Employing advanced power-saving techniques and optimized electronics design, TINYPROBE achieves a power consumption of < 1W for imaging modes (32 ch., 33 Hz) and < 1.3W for high-PRF Doppler mode (2 ch., 1400 Hz). This results in a state-of-the-art power efficiency of 44.9 mW/Mbps for wireless US systems, ensuring multi-hour operation with a compact 500 mAh Li-Po battery. We validate TINYPROBE as a versatile, general-purpose wearable platform in multiple in-vivo imaging scenarios, including muscle and bladder imaging, and blood flow velocity measurements.
{"title":"TinyProbe: A Wearable 32-channel Multi-Modal Wireless Ultrasound Probe.","authors":"Sergei Vostrikov, Josquin Tille, Luca Benini, Andrea Cossettini","doi":"10.1109/TUFFC.2024.3496474","DOIUrl":"https://doi.org/10.1109/TUFFC.2024.3496474","url":null,"abstract":"<p><p>The need for continuous monitoring of cardiorespiratory activity, blood pressure, bladder, muscle motion analysis, and more, is pushing for research and development of wearable ultrasound devices. In this context, there is a critical need for highly configurable, energy-efficient wearable ultrasound systems with wireless access to raw data and long battery life. Previous exploratory works have primarily relied on bulky commercial research systems or custom-built prototypes with limited and narrowly-focused field applicability. This paper presents TINYPROBE, a novel multi-modal wearable ultrasound platform. TINYPROBE integrates a 32-channel ultrasound RX/TX frontend, including TX beamforming (64 V<sub>pp</sub> excitations, 16 delay profiles) and analog-to-digital conversion (up to 30 Msps, 10 bit), with a WiFi link (21.6 Mbps, UDP), for wireless raw data access, all in a compact (57 × 35 × 20 mm) and lightweight (35 g) design. Employing advanced power-saving techniques and optimized electronics design, TINYPROBE achieves a power consumption of < 1W for imaging modes (32 ch., 33 Hz) and < 1.3W for high-PRF Doppler mode (2 ch., 1400 Hz). This results in a state-of-the-art power efficiency of 44.9 mW/Mbps for wireless US systems, ensuring multi-hour operation with a compact 500 mAh Li-Po battery. We validate TINYPROBE as a versatile, general-purpose wearable platform in multiple in-vivo imaging scenarios, including muscle and bladder imaging, and blood flow velocity measurements.</p>","PeriodicalId":13322,"journal":{"name":"IEEE transactions on ultrasonics, ferroelectrics, and frequency control","volume":"PP ","pages":""},"PeriodicalIF":3.0,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142619305","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-08DOI: 10.1109/TUFFC.2024.3494019
Chunjie Shan;Yidan Zhang;Chunrui Liu;Zhibin Jin;Hanlin Cheng;Yidi Chen;Jing Yao;Shouhua Luo
Carotid atherosclerotic plaques are a major complication associated with type II diabetes, and carotid ultrasound is commonly used for diagnosing carotid vascular disease. In primary hospitals, less experienced ultrasound physicians often struggle to consistently capture standard carotid images and identify plaques. To address this issue, we propose a novel approach, the long-short memory-based detection (LSMD) network, for carotid artery detection in ultrasound video streams, facilitating the identification and localization of critical anatomical structures and plaques. This approach models short- and long-distance spatiotemporal features through short-term temporal aggregation (STA) and long-term temporal aggregation (LTA) modules, effectively expanding the temporal receptive field with minimal delay and enhancing the detection efficiency of carotid anatomy and plaques. Specifically, we introduce memory buffers with a dynamic updating strategy to ensure extensive temporal receptive field coverage while minimizing memory and computation costs. The proposed model was trained on 80 carotid ultrasound videos and evaluated on 50, with all videos annotated by physicians for carotid anatomies and plaques. The trained LSMD was evaluated for performance on the validation and test sets using the single-frame image-based single shot multibox detector (SSD) algorithm as a baseline. The results show that the precision, recall, average precision (AP) at $text {IoU}={0.50}$